
On the Spectre of Meltdown
Analysing the Attacks and Mitigations

Björn Ruytenberg
bjorn@bjornweb.nl

May 22, 2018

Special thanks to
Yuval Yarom, the University of Adelaide and Data61

for providing content and support

On the Spectre of Meltdown – Björn Ruytenberg

About me

Björn Ruytenberg

MSc Student in Information Security @ TUE
Teaching Assistant, graduate course on compilers & platforms @ TUE
BSc in Electrical Engineering and Computer Science

Security Researcher
Main interests: sandboxing and virtualization technology
Found several vulnerabilities in Microsoft Office, Foxit Reader, VMware
Workstation, Adobe Flash

2

On the Spectre of Meltdown – Björn Ruytenberg

Roadmap

Introduction: Microarchitectural Basics
What is Meltdown?
What is Spectre?
Exploitation Scenarios
Mitigations
Attack Variants
Closing Thoughts

3

On the Spectre of Meltdown – Björn Ruytenberg 4

Meltdown

On the Spectre of Meltdown – Björn Ruytenberg

Meltdown – Basic Outline

• Design flaw that affects most modern Intel CPUs (and some ARMs)
• Uses out-of-order execution to leak data through cache timing attack

• From an unprivileged process, an attacker can:
• Bypass language-based security
• Bypass sandboxes, containers/paravirtualization hypervisors
• Read arbitrary memory, including kernel memory

5

On the Spectre of Meltdown – Björn Ruytenberg

Caches

• Fast processor but slower
memory
• Cache utilizes locality to bridge

the gap
• Divides memory into lines
• Stores recently used lines

Processor

Memory

Cache

6

On the Spectre of Meltdown – Björn Ruytenberg

mulq $m0
add %rax,$A[0]
mov
8*2($np),%rax
lea 32($tp),$tp
adc \$0,%rdx
mov %rdx,$A[1]
mulq $m1
add %rax,$N[0]
mov
8($a,$j),%rax
adc \$0,%rdx
add $A[0],$N[0]
adc \$0,%rdx
mov $N[0],-
24($tp)
mov %rdx,$N[1]
mulq $m0
add %rax,$A[1]
mov
8*1($np),%rax
adc \$0,%rdx
mov %rdx,$A[0]
mulq $m1
add %rax,$N[1]
mov ($a,$j),%rax
mov
8($a,$j),%rax
adc \$0,%rdx

Instruction Pipelining
• Nominally, the processor executes instructions one after

the other
• Instruction execution consists of multiple steps
• Each uses a different unit

Instruction
Fetch

Instruction
Decode Argument Fetch Execute Write BackInstruction

Fetch
Instruction

Decode Argument Fetch ExecuteInstruction
Fetch

Instruction
Decode Argument Fetch Execute Write Back

7

On the Spectre of Meltdown – Björn Ruytenberg

Instruction Pipelining

Instruction
Fetch

Instruction
Decode Argument Fetch Execute Write BackInstruction

Fetch
Instruction

Decode Argument Fetch ExecuteInstruction
Fetch

Instruction
Decode Argument Fetch Execute Write Back

Instruction
Fetch

Instruction
Decode Argument Fetch Execute Write Back

Instruction
Fetch

Instruction
Decode Argument Fetch Execute Write Back

Instruction
Fetch

Instruction
Decode Argument Fetch Execute Write Back

Instruction
Fetch

Instruction
Decode Argument Fetch Execute Write Back

Instruction
Fetch

Instruction
Decode Argument Fetch Execute

Instruction
Fetch

Instruction
Decode Argument Fetch Execute

Instruction
Fetch

Instruction
Decode Argument Fetch Execute

Instruction
Fetch

Instruction
Decode Argument Fetch

Instruction
Fetch

Instruction
Decode Argument Fetch Execute Write Back

Instruction
Fetch

Instruction
Decode Argument Fetch Execute Write Back

mulq $m0
add %rax,$A[0]
mov
8*2($np),%rax
lea 32($tp),$tp
adc \$0,%rdx
mov %rdx,$A[1]
mulq $m1add
%rax,$N[0]
mov
8($a,$j),%rax
adc \$0,%rdx
add $A[0],$N[0]
adc \$0,%rdx
mov $N[0],-
24($tp)
mov %rdx,$N[1]
mulq $m0
add %rax,$A[1]
mov
8*1($np),%rax
adc \$0,%rdx
mov %rdx,$A[0]
mulq $m1
add %rax,$N[1]
mov ($a,$j),%rax
mov
8($a,$j),%rax
adc \$0,%rdס

c = a / b;
d = c + 5;

• Nominally, the processor executes instructions one after the
other
• Instruction execution consists of multiple steps

• Each uses a different unit
• Pipelining increases utilization by executing steps of multiple

instructions

How to deal with
dependencies?

8

On the Spectre of Meltdown – Björn Ruytenberg

Out-of-Order Execution (1)
• Execute instructions when data is available rather than by

program order

• Completed instructions wait in the reorder buffer until all
previous instructions are retired
• Why not retire immediately?

IF ID AF EX WB

IF ID AF EX WB

IF ID AF EX WB

c = a / b;
d = c + 5;
e = f + g;IF ID AF EX WB

IF ID AF EX

IF ID AF EXIF ID AF EX WB

IF ID AF EX WB

IF ID AF EX WB

9

On the Spectre of Meltdown – Björn Ruytenberg

Out-of-Order Execution (2)
• Execute instructions when data is available

rather than by program order

• Completed instructions wait in the reorder buffer until all previous
instructions are retired
• Why not retire immediately?
• Out-of-order execution is speculative!
• Need to abandon instructions in the reorder buffer if never executed

IF ID AF EX WB

IF ID AF EX WB

c = a / b;
d = c + 5;
e = f + g;

IF ID

IF ID AF EX

IF ID AF EX WB

What if b=0?

10

On the Spectre of Meltdown – Björn Ruytenberg

i = *pointer;
y = array[i * 256];
i = *pointer;
y = array[i * 256];

CPU cache

array Secret dataptr

11

Kernel space (protected)User space

Program Flow – Legitimate Behavior

On the Spectre of Meltdown – Björn Ruytenberg

i = *pointer;
y = array[i * 256];

CPU cache

array Secret dataptr

12

Kernel space (protected)User space

Attack Flow (1)

Step 1:
Set pointer to kernel space

Step 2:
Due to out-of-order processing, CPU fetches secret value
from kernel space

Step 3:
Secret value is used to index
user space array

Exception triggered:
Results of out-of-order instructions discarded (i takes
previous value)

On the Spectre of Meltdown – Björn Ruytenberg

Attack Flow (2)

array Secret dataptr

i = *pointer;
y = array[i * 256];

CPU cache

13

Kernel space (protected)User space

Step 4:
Unprivileged process iterates through
array elements

Slow Slow
Fast (cache hit) Step 5:

Cached element will return much faster:
index indicates secret byte value

On the Spectre of Meltdown – Björn Ruytenberg 14

DEMO
Spying in Realtime on Password Input

On the Spectre of Meltdown – Björn Ruytenberg

Meltdown – Mitigation

• Kernel Page Table Isolation (KPTI)
• Linux kernel memory no longer mapped into user space processes
• User space can no longer access kernel memory

• Approach seemingly solid, but…
• On-going discussion about soundness

• SMI handlers: parts of kernel memory must always be mapped into user space processes
• Protects kernel, but user space programs still vulnerable
• Further research needed to confirm soundness

• Introduces overhead when jumping from user mode to kernel mode
• New capability proposed (CAP_DISABLE_PTI), disables KPTI for “safe” processes 1

15

1 Re: [RFC PATCH v2 6/6] x86/entry/pti: don't switch PGD on when pti_disable is set [LWN.net]

https://lwn.net/Articles/744298/

On the Spectre of Meltdown – Björn Ruytenberg

Meltdown - Intel-only? (1)

• Meltdown initially thought to be linked with Transactional
Synchronization Extensions (TSX-NI)
• Intel-only hardware atomic memory operations on Haswell and later
• Enables Meltdown attack without triggering software exception handling

• TSX not a requirement for Meltdown
• Does make attack virtually impossible to detect2

16

2 Detecting Attacks that Exploit Meltdown and Spectre with Performance Counters – Trend Micro, 2018

https://blog.trendmicro.com/trendlabs-security-intelligence/detecting-attacks-that-exploit-meltdown-and-spectre-with-performance-counters/

On the Spectre of Meltdown – Björn Ruytenberg

Meltdown - Intel-only? (2)

• Meltdown initially thought not to affect AMD processors3

• Meltdown paper release: AMD is likely vulnerable
• PoC confirms OoO execution occurs across security domains, practical

exploitation therefore seems feasible

17

3 LKML: Tom Lendacky: [PATCH] x86/cpu, x86/pti: Do not enable PTI on AMD processors

https://lkml.org/lkml/2017/12/27/2

On the Spectre of Meltdown – Björn Ruytenberg 18

Spectre

On the Spectre of Meltdown – Björn Ruytenberg

Spectre – Basic Outline

• Design flaw that affects all modern CPUs: Intel, AMD, ARM, POWER
• Branch prediction and speculative execution leave traces in cache
• Cache timing attack reveals data from different security domains

• Two variants:
• Spectre-v1: Read from the current user space process
• Spectre-v2: Read from other processes

19

On the Spectre of Meltdown – Björn Ruytenberg

Speculative Execution and Branches (1)
• When execution reaches a branch
• The processor predicts the outcome of the

branch
• Execution proceeds (speculatively) along

predicted branch

• Correct prediction à all is well
• Misprediction à abandon and resume

20

On the Spectre of Meltdown – Björn Ruytenberg

Speculative Execution and Branches (2)

• Branch History Buffer (BHB)
Outcome of conditional branches
JGE 4006c9

• Branch Target Buffer (BTB)
Target of indirect branches
JMP eax

21

On the Spectre of Meltdown – Björn Ruytenberg 22

Spectre
Variant 1: bounds check bypass

On the Spectre of Meltdown – Björn Ruytenberg

Spectre-v1
if (x < array_len) {
i = array[x];
y = array2[i * 256];

}

arrayarray2 secret array_lenx

<

if (x < array_len) {
i = array[x];
y = array2[i * 256];

}Attacker

Victim

Branch not
taken!

On the Spectre of Meltdown – Björn Ruytenberg

X is largeVictim

if (x < array_len) {
i = array[x];
y = array2[i * 256];

}

Spectre-v1

<

Cachex secret

arrayarray2 secret array_lenx

Attacker
Branch not

taken!

On the Spectre of Meltdown – Björn Ruytenberg

VictimMispredict

arrayarray2 secret array_lenx

if (x < array_len) {
i = array[x];
y = array2[i * 256];

}

Spectre-v1

<

Cachex secret

Attacker
Branch not

taken!

On the Spectre of Meltdown – Björn Ruytenberg 26

Spectre
Variant 2: branch target injection

On the Spectre of Meltdown – Björn Ruytenberg

Spectre-v2

Attacker

Victim

Victim's

Address

Space

Attacker's

Address

Space

jmpq %rax

movw (%rbx), %ax
movq (%rcx, %rax, 8), %rcx

lea gadget, %rax
jmpq %rax

ret

Gadget

On the Spectre of Meltdown – Björn Ruytenberg

Spectre – Mitigations

• Basic idea: prevent speculative execution across branches
• Three approaches:
• Spectre-v1: Explicitly prevent speculative execution across conditional

branches by inserting blocking operation
• Spectre-v2: Avoid training branch predictor by replacing branch instructions

with semantic equivalents
• Spectre-v2: Disable branch prediction across security domains

28

On the Spectre of Meltdown – Björn Ruytenberg

Spectre-v1 – Insert Blocking Operation
• Approach: Prevent speculative execution by inserting blocking operation
• LFENCE (serialize load operations), PAUSE (spin loop hint)

• Effective, but
• Need to recompile code or patch binary
• Significantly degrades performance – need static analysis to identify vulnerable code

29

scanf("%d", &untrusted);
if(untrusted < arrayLength)
{

value = array[untrusted];
asm("lfence");
value2 = array2[value * 64];

}

call 4004a0 <__isoc99_scanf@plt>
mov ecx,DWORD PTR [rbp-0xe4]
cmp ecx,DWORD PTR [rbp-0xe8]
mov DWORD PTR [rbp-0x114],eax
jge 4006c9 <main+0x109>
movsxd rax,DWORD PTR [rbp-0xe4]
movsx ecx,BYTE PTR [rbp+rax*1-0x70]
mov DWORD PTR [rbp-0xec],ecx
lfence
mov ecx,DWORD PTR [rbp-0xec]
shl ecx,0x6

On the Spectre of Meltdown – Björn Ruytenberg

Spectre-v2 – Retpoline (1)
• Approach: Avoid training branch predictor by replacing branch

instructions with semantic equivalents
• Return trampoline (retpoline)
• Indirect branch normally pulls return address off stack (“jump to this

address”)
• Replace with PUSH/RET

• Push target address onto stack
• Return to target address

• BTB does not learn about branch due to pattern mismatch

30

On the Spectre of Meltdown – Björn Ruytenberg

Spectre-v2 – Retpoline (2)
• Need to recompile code or patch binary
• Degrades performance
• Somewhat mitigated by Return Stack Buffer (RSB)

• Not a perfect solution: ineffective on Skylake and later
• RSB behavior different: when empty, falls back to BTB prediction
• Addressed with RSB stuffing 4, but currently implemented by Linux kernel only 5

• Compiler support on the way 6

31

4 Retpoline: A Branch Target Injection Mitigation - Intel, 2018

5 x86/retpoline: Avoid return buffer underflows on context switch - Patchwork

6 [llvm-dev] LLVM Release Schedules: 5.0.2, 6.0.1

https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://patchwork.kernel.org/patch/10150615/
http://lists.llvm.org/pipermail/llvm-dev/2018-March/121757.html

On the Spectre of Meltdown – Björn Ruytenberg

Spectre-v2 – Disable BTB Prediction
• Approach: Disable BTB prediction across security domains
• Intel microcode update 7

• Introduces new MSRs to control BTB
• No learning across hyperthreads
• Higher security levels do not learn from

lower level activity
• BTB clobbering, wiped on each context switch
• Major performance impact

32

7 Microcode Revision Guidance - Intel, 2018
8 Controlling the Performance Impact of Microcode and Security Patches - RedHat, 2018

https://newsroom.intel.com/wp-content/uploads/sites/11/2018/04/microcode-update-guidance.pdf
https://access.redhat.com/articles/3311301

On the Spectre of Meltdown – Björn Ruytenberg 33

Attack Variants

On the Spectre of Meltdown – Björn Ruytenberg

On-going Research (1)

• BranchScope – Evtyushkin et al.
• Pollutes cache of directional branch prediction (Pattern History Table), leaks

data through branch selection timing side-channel

34

On the Spectre of Meltdown – Björn Ruytenberg

On-going Research (2)

• SMM Bounds Check Bypass – Bazhaniuk et al.
• System Management Mode: highly-privileged firmware memory space

(BIOS/UEFI), stores firmware secrets and SMI handlers
• Extends Spectre to bypass hardware-based protections, leak SMM data

• SGXpectre – Chen et al.
• Extends Spectre to leak secrets from SGX secure enclave

35

On the Spectre of Meltdown – Björn Ruytenberg

On-going Research (3)

• Speculative Store Bypass, Rogue System Register Read (formerly
Spectre-NG) – Horn et al.
• 8 new vulnerabilities affecting Intel and AMD, possibly ARM

• First batch disclosed May 22

• Design flaw in processing load instructions: operands not subject to preceding store
operations are speculatively loaded

• System registers can be subjected to speculative reads

• Behavior can be exploited to target Spectre-like gadgets

• Intel working on patches, two-stage release planned for May/August

36

On the Spectre of Meltdown – Björn Ruytenberg

Closing Thoughts

• Meltdown and Spectre affect fundamentals of modern CPU design
• Raise the bar in a new class of side channel attacks
• Many open questions
• Mitigations subject to debate regarding effectiveness, impact
• Attack variants part of on-going research
• The real fix: a silicon redesign?

37

