When Lightning Strikes Thrice: Breaking Thunderbolt 3 Security

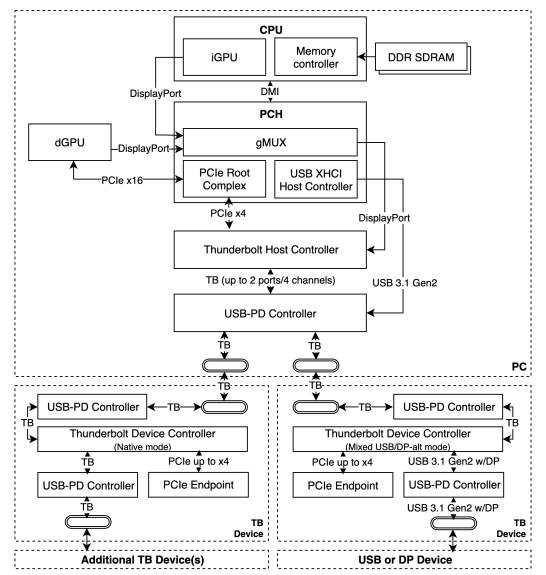
BJÖRN RUYTENBERG, MSC EINDHOVEN UNIVERSITY OF TECHNOLOGY

@ØXIPHORUS • BJORNWEB.NL

9th Annual CSng Workshop – November 22, 2023

Thunderbolt: A PCIe-based Interconnect

- High-performance, proprietary I/O protocol developed by Intel and Apple
- PCI Express (PCIe)-based, Direct Memory Access (DMA)enabled connectivity
- Use cases
 - External graphics, docking stations, 5K monitors, high-speed external storage, peer-to-peer networking
- Thunderbolt 1 (2011) and 2 (2013) mostly exclusive to Macs
 - Mini-DisplayPort form factor multiplexes TB, native DP
- Thunderbolt 3 (2015) first version to be widely adopted
 - USB-C form factor multiplexes TB, native DP and/or USB
- USB4 (2019) extends TB3 to additional market segments
 - While not spec-mandated, virtually all USB4-compliant host controllers to date support TB3 signaling
 - Beyond x86: first TB version to be adopted on ARM

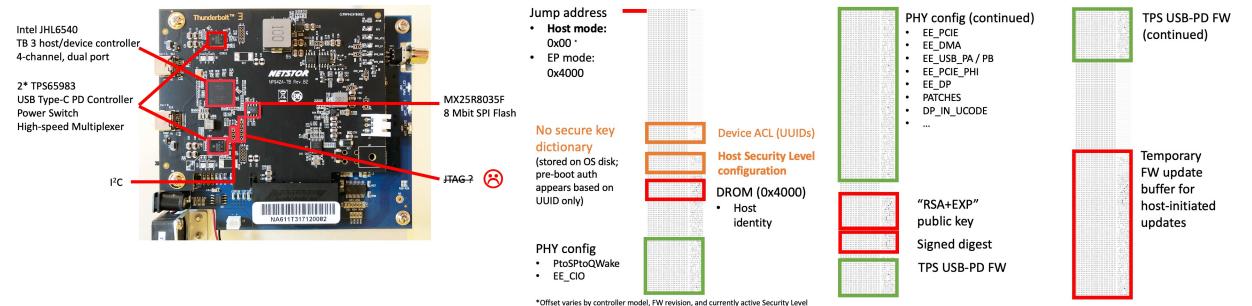


Reverse Engineering Thunderbolt

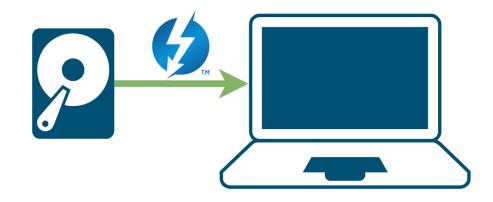
- Thunderbolt is a proprietary standard
- Protocol specifications not publicly documented
- Hardware architecture not publicly documented

Reverse Engineering Thunderbolt

Our analysis of Thunderbolt hardware architecture

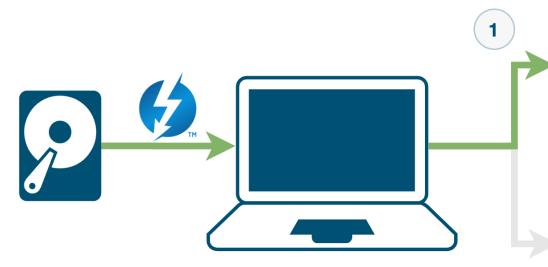


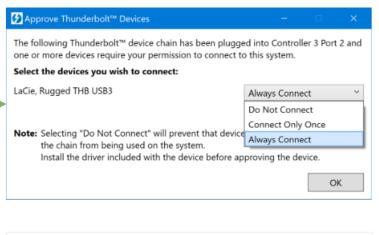
Reverse Engineering Thunderbolt


Dissecting Thunderbolt-equipped systems and devices

- Reversed Thunderbolt host and device controller firmware
- 5 vendors, 24 systems across 8 generations of systems: Intel, Apple, Lenovo, HP, Dell, Gigabyte
- 5 generations of Thunderbolt controllers: Falcon Ridge (TB2), Alpine Ridge-2015, Alpine Ridge-2016, Titan Ridge, Ice Lake (TB3)

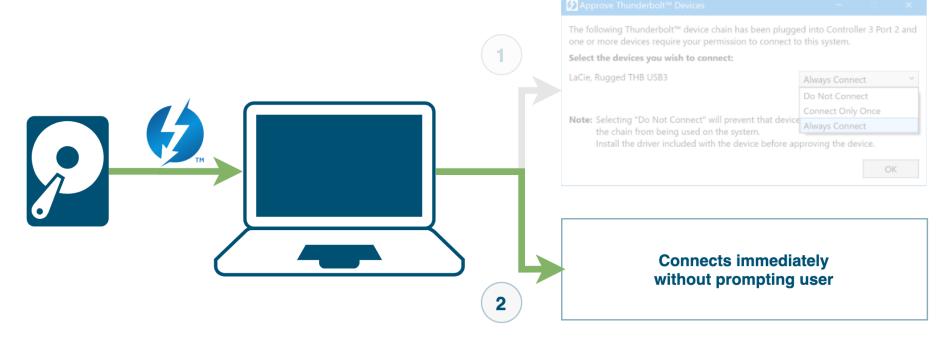
Thunderbolt Security Architecture


- Security Levels access control system enabling users to authorize trusted device only
- Introduced in Thunderbolt 2
- No authorization = No connectivity



Thunderbolt Security Architecture

- Security Levels access control system enabling users to authorize trusted device only
- Introduced in Thunderbolt 2
- No authorization = No connectivity



Connects immediately without prompting user

Thunderbolt Security Architecture

- Security Levels access control system enabling users to authorize trusted device only
- Introduced in Thunderbolt 2
- No authorization = No connectivity

When Lightning Strikes Thrice: Breaking Thunderbolt 3 Security

Thunderspy (<u>https://thunderspy.io</u>) is a research project focused on reverse engineering the security properties of Thunderbolt.

So far, we have disclosed seven vulnerabilities in public:

- 1. Inadequate firmware verification schemes
- 2. Weak device authentication scheme
- 3. Use of unauthenticated device metadata
- 4. Downgrade attack using backwards compatibility
- 5. Use of unauthenticated controller configurations
- 6. SPI flash interface deficiencies

9

7. No Thunderbolt security under Boot Camp (Apple)*

Demo 1 – Unlocking Windows PC in 5 minutes using attack method 1

Partially sped up to fit CSNG session. Please refer to our <u>YouTube recording</u> for the complete real-time footage.

Institutional impact

Corporate first contact

Thunderspy was reported for coordinated disclosure to key strategic vendors and institutions, including:

- Apple
- Intel (who informed Dell, HP, and Lenovo)
- Microsoft
- Linux kernel security team
- Major Linux distro vendors, including Red Hat, Debian, Canonical
- MITRE Corporation
- NCSC-NL
- TWCERT-CC
- Major ODMs, including Clevo, Compal, Quanta (next slide)

Institutional impact

Corporate first contact

We worked with major ODMs to contact all affected vendors, including:

- Razer
- Asus
- Huawei
- Gigabyte
- Medion
- Acer
- MSI
- Dynabook (formerly Toshiba)
- ► BTO
- ► SKIKK
- ► PNY
- System76

Industry response (selected)

Intel

In our vulnerability disclosure procedure so far, Intel has stated the following:

- All vulnerabilities confirmed for Thunderbolt 1, 2, and 3
- Thunderbolt 3
 - No fix for in-market systems all Thunderbolt-equipped systems released 2011-2018, and several >= 2019, remain unpatched against Thunderspy
 - Intel-suggested mitigation: Kernel DMA Protection
 - Only available on some (not all) Thunderbolt 3 systems released 2019 2021
 - Narrow mitigation scope: mitigates arbitrary DMA, does not address TS vulnerabilities 1-3 and other PCIe-inherent attack vectors
- USB4
 - No spec-mandated mitigations to Thunderspy
- Thunderbolt 4
 - Mitigates Thunderspy by incorporating additional hardware protections, and
 - Thunderbolt 4 requires Kernel DMA Protection as part of vendor product certification

Industry response (selected) Microsoft

Microsoft 🔎 Light 🐼 Microsoft Security More ~ Start free trial All Microsoft 🗸 Blog home / Device management Search the blog 0 News Device management 3 min read Secured-core PCs help customers stay ahead of advanced data theft By Enterprise and OS Security

May 13, 2020 Researchers at the Eindhoven University of Technology recently revealed

Threat trends **Microsoft Security**

information around "Thunderspy," an attack that relies on leveraging direct **G** 🖸 in memory access (DMA) functionality to compromise devices. An attacker with physical access to a system can use Thunderspy to read and copy data even from systems that have encryption with password protection enabled.

Insight Secured-core PCs provide customers with Windows 10 systems that come configured from OEMs with a set of hardware, firmware, and OS features enabled Windows by default, mitigating Thunderspy and any similar attacks that rely on malicious DMA.

How Thunderspy works

Like any other modern attack, Thunderspy relies on not one but multiple building blocks being chained together. Below is a summary of how Thunderspy can be

[Secured-core PCs help customers stay ahead of advanced data theft]

Defense against hardware and firmware exploits

Leveraging hardware for security

At the heart of the Surface Laptop 4, the device leverages the Trusted Platform Module 2.0 (TPM) and the AMD Ryzen[™] Mobile Processors with System Guard to boot securely and minimize the impact of firmware vulnerabilities by sandboxing firmware to protect critical subsystems and sensitive data. Kernel Direct Memory Access Protection is pre-enabled on these devices, helping to ensure that the system is protected against malicious and unintended Direct Memory Access (DMA) attacks for all DMA-capable devices, such as PCI devices, thwarting the entire class of drive-by DMA attacks like Thunderspy.

[Surface expands its Secured-core Portfolio with new Surface Laptop 4]

Thunderspy DMA Peripheral Attack

Researchers at the Eindhoven University of Technology recently revealed information around "Thunderspy," an attack that relies on leveraging direct memory access (DMA) functionality to compromise devices. An attacker with physical access to a system can use Thunderspy to read and copy data even from systems that have encryption with password protection enabled.

Secured-core PCs provide customers with Windows 11 systems that come configured from OEMs with a set of hardware, firmware, and OS features enabled by default, mitigating Thunderspy and any similar attacks that rely on malicious DMA.

[Windows 11 Secured-Core PC – Enterprise Evaluation Guide]

Industry response (selected) MITRE Corporation

e > CAPEC LISt > CAPE	EC-665: Exp	loitation o	of Thunder	bolt Prote	ction F	laws (Version 3.9)								IC	Lookup	:
		н	ome	Abou	ut	CAPEC Lis	t	Cor	nmunity		News	:	Search			
APEC-665:	Explo	oitatio	on of	Thun	ıder	rbolt Prot	ectio	on F	laws							
Attack Pattern ID: 66 Abstraction: Detailed																
ew customized informati	ion:	Conce	eptual	\supset	\square	Operational	\supset	$\left(\right)$	Mapping	g-Friend	lly		Comple	te	\supset	
✓ Description																
n order to exploit y gaining physical a Peripheral Interfac up. If successful, t and memory from Execution Flow.	vulnerabil ccess to a e) flash, t his allows the targe	ities in t target hrough the adv	he imple device, t the use versary t	mentation he adve of a SPI o modify	on of ersary I Prog y merr	authorization a conducts high raming device nory, subvert a	and veri -level fi and an uthentio	ificatio irmwa n exte catior	on schen re manip nal Thur mechar	nes wit pulatior nderbo nisms, s	hin Thu n of the It device spoof id	nderbo victim e, typic lentitie	It protection Thunderbol ally as the t and conte	n mech t contro arget c nt, anc	anisms oller SF device i l extrac	s. Upon PI (Serial s booting
An adversary leve in order to exploit gaining physical a Peripheral Interfac up. If successful, t and memory from Execution Flow.	vulnerabil ccess to a e) flash, t his allows the targe	ities in t target hrough the adv	he imple device, t the use versary t	mentation he adve of a SPI o modify	on of ersary I Prog y merr	authorization a conducts high raming device nory, subvert a	and veri -level fi and an uthentio	ificatio irmwa n exte catior	on schen re manip nal Thur mechar	nes wit pulatior nderbo nisms, s	hin Thu n of the It device spoof id	nderbo victim e, typic lentitie	It protection Thunderbol ally as the t and conte	n mech t contro arget c nt, anc	anisms oller SF device i l extrac	s. Upon PI (Serial s booting
in order to exploit gaining physical as Peripheral Interfac up. If successful, t and memory from Execution Flow.	vulnerabil ccess to a re) flash, f his allows the targe	ities in t target hrough the adv	he imple device, t the use versary t	mentation he adve of a SPI o modify	on of ersary I Prog y merr	authorization a conducts high raming device nory, subvert a	and veri -level fi and an uthentio	ificatio irmwa n exte catior	on schen re manip nal Thur mechar	nes wit pulatior nderbo nisms, s	hin Thu n of the It device spoof id	nderbo victim e, typic lentitie	It protection Thunderbol ally as the t and conte	n mech t contro arget c nt, anc	anisms oller SF device i l extrac	s. Upon PI (Serial s booting
in order to exploit g gaining physical as Peripheral Interfac up. If successful, t and memory from Execution Flow.	vulnerabil ccess to a re) flash, f his allows the targe	ities in t target hrough the adv	he imple device, t the use versary t	mentation he adve of a SPI o modify	on of ersary I Prog y merr	authorization a conducts high raming device nory, subvert a	and veri -level fi and an uthentio	ificatio irmwa n exte catior	on schen re manip nal Thur mechar	nes wit pulatior nderbo nisms, s	hin Thu n of the It device spoof id	nderbo victim e, typic lentitie	It protection Thunderbol ally as the t and conte	n mech t contro arget c nt, anc	anisms oller SF device i l extrac	s. Upon PI (Serial s booting
n order to exploit of gaining physical an Peripheral Interfacu p. If successful, t and memory from Execution Flow. / Likelihood Of A Low / Typical Severit	vulnerabil ccess to a re) flash, f his allows the targe	ities in t target hrough the adv	he imple device, t the use versary t	mentation he adve of a SPI o modify	on of ersary I Prog y merr	authorization a conducts high raming device nory, subvert a	and veri -level fi and an uthentio	ificatio irmwa n exte catior	on schen re manip nal Thur mechar	nes wit pulatior nderbo nisms, s	hin Thu n of the It device spoof id	nderbo victim e, typic lentitie	It protection Thunderbol ally as the t and conte	n mech t contro arget c nt, anc	anisms oller SF device i l extrac	s. Upon PI (Serial s booting
n order to exploit s gaining physical as Peripheral Interface up. If successful, t and memory from Execution Flow. / Likelihood Of A Low / Typical Severit Very High / Relationships	vulnerabil ccess to a e) flash, i his allows the targe uttack	ities in t a target hrough the adv device	he imple device, t the use /ersary t . Current	mentatii he adve of a SPI o modify ly 7 maj	on of ersary I Prog y merr	authorization a conducts high raming device nory, subvert a	and veri -level fi and an uthentio	ificatio irmwa n exte catior	on schen re manip nal Thur mechar	nes wit pulatior nderbo nisms, s	hin Thu n of the It device spoof id	nderbo victim e, typic lentitie	It protection Thunderbol ally as the t and conte	n mech t contro arget c nt, anc	anisms oller SF device i l extrac	s. Upon PI (Serial s booting
n order to exploit of gaining physical au Peripheral Interfact pp. If successful, t and memory from Execution Flow. / Likelihood Of <i>P</i> Low / Typical Severit //ery High	vulnerabil ccess to a re) flash, f his allows the targe	ities in t target hrough the adv	he imple device, t the use (versary t . Current	mentatii he adve of a SPI o modify ly 7 maj	on of a ersary I Prog y mem jor vul	authorization a conducts high raming device nory, subvert a	and veri -level fi and an uthentid ist withi	ificatio irmwa n exte catior	on schen re manip nal Thur mechar	nes wit pulatior nderbo nisms, s	hin Thu n of the It device spoof id	nderbo victim e, typic lentitie	It protection Thunderbol ally as the t and conte	n mech t contro arget c nt, anc	anisms oller SF device i l extrac	s. Upon PI (Serial s booting
n order to exploit of gaining physical au Peripheral Interface up. If successful, t and memory from Execution Flow. Likelihood Of <i>P</i> Low Typical Severity Very High Relationships Nature	vulnerabil ccess to a ie) flash, t his allows the targe xttack y Type	ities in t a target hrough the adv a device	he imple device, t the use (versary t . Current Name Inter-c	mentatii he adve of a SPI o modify ly 7 maj	on of a ersary I Prog y mem jor vul	authorization a conducts high iraming device nory, subvert a Inerabilities exi	and veri -level fi and an uthentid ist withi	ificatio irmwa n exte catior	on schen re manip nal Thur mechar	nes wit pulatior nderbo nisms, s	hin Thu n of the It device spoof id	nderbo victim e, typic lentitie	It protection Thunderbol ally as the t and conte	n mech t contro arget c nt, anc	anisms oller SF device i l extrac	s. Upon PI (Serial s booting
in order to exploit g aining physical ar Peripheral Interfac up. If successful, t and memory from Execution Flow. Likelihood Of A Low Typical Severit Very High Relationships Nature ChildOf	vulnerabil ccess to a ice) flash, t his allows the targe xttack y Type	ID 276	he imple device, t the use versary to Current Name Inter-co Conte	mentatii he adve of a SPI o modify ly 7 maj	ent Pro ent Program	authorization a conducts high iraming device nory, subvert a Inerabilities exi	and veri -level fi and an uthentid ist withi	ificatio irmwa n exte catior	on schen re manip nal Thur mechar	nes wit pulatior nderbo nisms, s	hin Thu n of the It device spoof id	nderbo victim e, typic lentitie	It protection Thunderbol ally as the t and conte	n mech t contro arget c nt, anc	anisms oller SF device i l extrac	s. Upon PI (Serial s booting
in order to exploit gaining physical ar Peripheral Interfact up. If successful, t and memory from Execution Flow.	vulnerabil ccess to a le) flash, th is allows the targe the targe that track	ID 276 148	he imple device, t the use versary t . Current Name Inter-c Conte Identit	mentatii he adve of a SPI o modify Jy 7 maj Jy 7 maj <u>compone</u> <u>nt Spoo</u>	ent Profing	authorization a conducts high iraming device nory, subvert a Inerabilities exi	and veri -level fi and an uthentid ist withi	ificatio irmwa n exte catior	on schen re manip nal Thur mechar	nes wit pulatior nderbo nisms, s	hin Thu n of the It device spoof id	nderbo victim e, typic lentitie	It protection Thunderbol ally as the t and conte	n mech t contro arget c nt, anc	anisms oller SF device i l extrac	s. Upon PI (Serial s booting

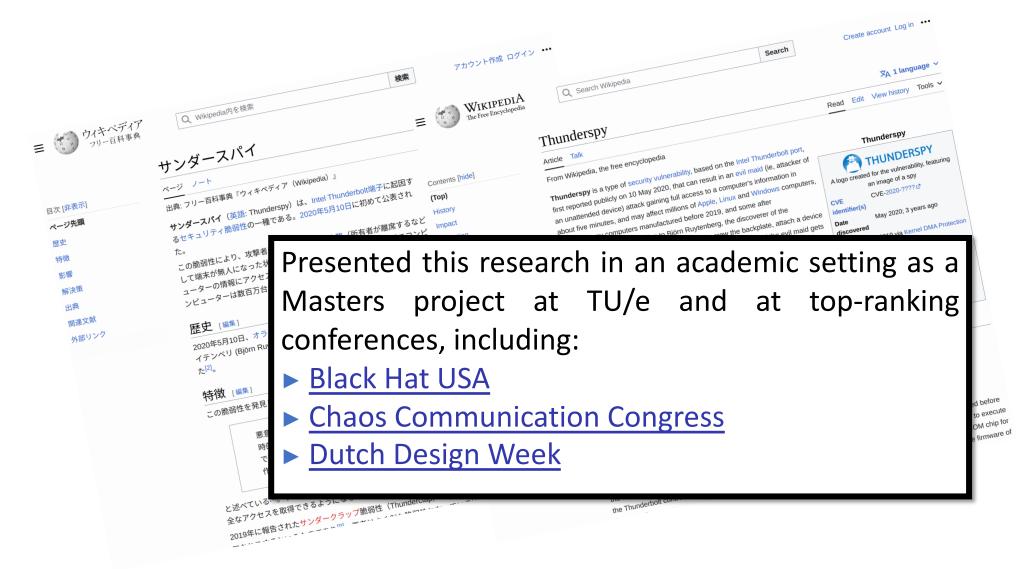
[CAPEC-665: Exploitation of Thunderbolt Protection Flaws – CAPEC Version 3.5]

Addressing Thunderspy, One Weakness at A Time

CWE/CAPEC · Follow 3 min read · Apr 20, 2021

🏐 -- 📿

Does your company produce hardware? If you don't take security into account, consumers won't trust your hardware, and they will act accordingly: by buying elsewhere to minimize risk. This is especially true for corporate purchasing where large organizations view security as a critical requirement. Let's take a look at a recent vulnerability and see how a brand's reputation can be protected by mitigating its underlying weaknesses.


<u>Thunderspy</u> is the name for some impressive attacks on Thunderbolt 3 systems, discovered by Bjorn Ruytenberg. Thunderbolt is a proprietary I/O protocol that allows for a two-way high-bandwidth PCIe port for external devices to have Direct Memory Access-enabled I/O. The technology provides

[Addressing Thunderspy, One Weakness at A Time – CWE/CAPEC Blog]

Public awareness

Helping users, developers, and the general public

Media coverage

International impact

FORBES > INNOVATION > CYBERSECURITY **Microsoft** Co SECURITY MAY 18, 21 Security Prol O By Clare Duffy, CNN Businer ANDY GREENBERG Users Thunderbolt F Hands-On Ha Zak Doffman Contributor 🗊

BACKCHANNEL BU

Forbes

I cover security and surveillance ar

Talking Cyber'

The so-called Thunderspy a to a device, and it affects ar

 \equiv WIRED

SOPA IMAGES/LIGHTROCKET VIA GET

() 2020.05.13 에인트호번 دو مانینور دارد که ومیل کردن دو مانینور دارد 트 3를 대상: 하는보고서 Thunderspy has received media coverage from a diverse set of publications around the world. New York (CNN Bu

IT WOI

新江市人

TOPIC

보안 / 퍼스널 컴퓨팅

"부트캠프

안취약잠

B

مرین م کامید فی در از دستار تواناتر کند. این فناوری قابلیت مای متعددی دارد که وصف من میدوندهای آزینده از دستار تواناتر کند. این مناوری قابلیت مای متعددی دارد که وصف مرین م کامید فیدهای آزینده از دستار تواناتر کند.

سیناندارد تاندردولیت سر. تنبها دو مود از ویژگرهای قابل توجه آن هستند. استاندارد تاندردولیت سر. تنبها دو

تانددیولت ۲ چه تانیزی برگامپیوندو

لاتفاعنون

۲ - به زیرو با ^{ایراز} تاندیوی ۲ -

0

بری به اولندایی ما و سرین دو برابری نسبت .

ن در کاری

بی م کامپیوتدهای آبنده و

C + P

م نور با المنازي الماري المنارية المراجع المناجع المراجع المناجع المراجع المناجع المراجع المراجع

دو برایری ^{زرست.}

باندارد تاندربولت

Caps

Þa

Ha

Y₈

MON,

Nos

UNHACKABLE

This securit

at risk for a

© 3 minute read · Updated

Nieuws 🗸

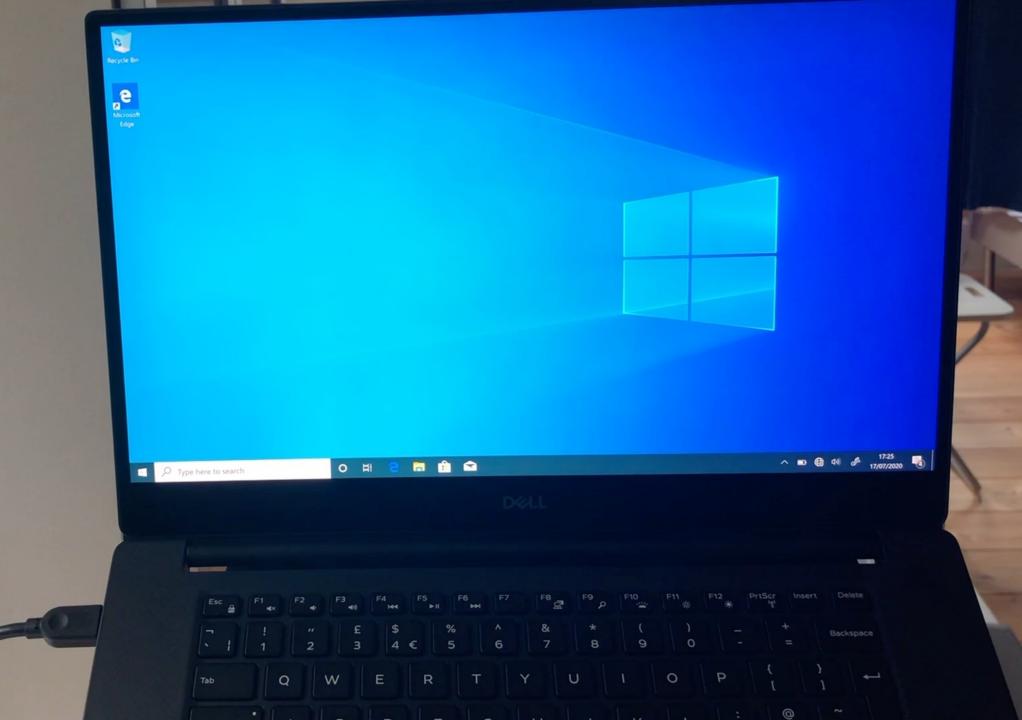
details a hacking mecha computers: the Thunder/ Bjorn Ruytenberg, a resi identified a security flav break into a computer ;

7가지 썬더스파이 취약점 Ruytenberg. Een goed voorbereide nat the computer's owner has taken security precaute kunnen krijgen tot een laptop van een slachtoffer. "If your computer has such a port, an attacker who gets brief physical access to Microsoft has now joined find, read and copy all your data, even if your drive is encrypted and your vulnerability with Thunderbolt ports, one that enables an attacker with the encrypted and your ical access to a PC to modify the port's controller firmware-disabling its

Thunderspy – Public Disclosure

Raising awareness and improving user security

Creating freely available tools with source code helps to empower users and is an important part of security research. We have published:


- <u>Spycheck</u>, a free and open-source (GPL) tool for Windows and GNU/Linux to detect if a system is susceptible to Thunderspy
- <u>tcfp</u>, a free and open-source (GPL) tool to patch Thunderbolt controller firmware; PoC demonstrating Thunderspy vulnerabilities
- <u>SPIblock</u>, a free and open-source (GPL) tool to reconfigure Thunderbolt flash memory security settings; PoC demonstrating Thunderspy vulnerabilities

Millions of systems released 2011-2018, and several >= 2019, remain unpatched against Thunderspy. To help protect users, we have additionally published:

 <u>kDMAp-patcher</u>, an experimental OS-agnostic BIOS extension to enable Kernel DMA Protection on systems where vendors have otherwise left users entirely vulnerable

Demo 2 – Kernel DMA Protection Patcher Patching kDMAp onto unsupported machines

Industry response to kdmap-patcher (selected)

Lenovo

Lenovo. SHOP SUPPORT COMMUNITY Q My Account English V Linglish Cart V

Intel Thunderbolt Vulnerabilities

Lenovo Security Advisory: LEN-31390

Potential Impact: Information disclosure, privilege escalation

Severity: High

Scope of Impact: Industry-wide

CVE Identifier: CVE-2019-14630

Summary Description:

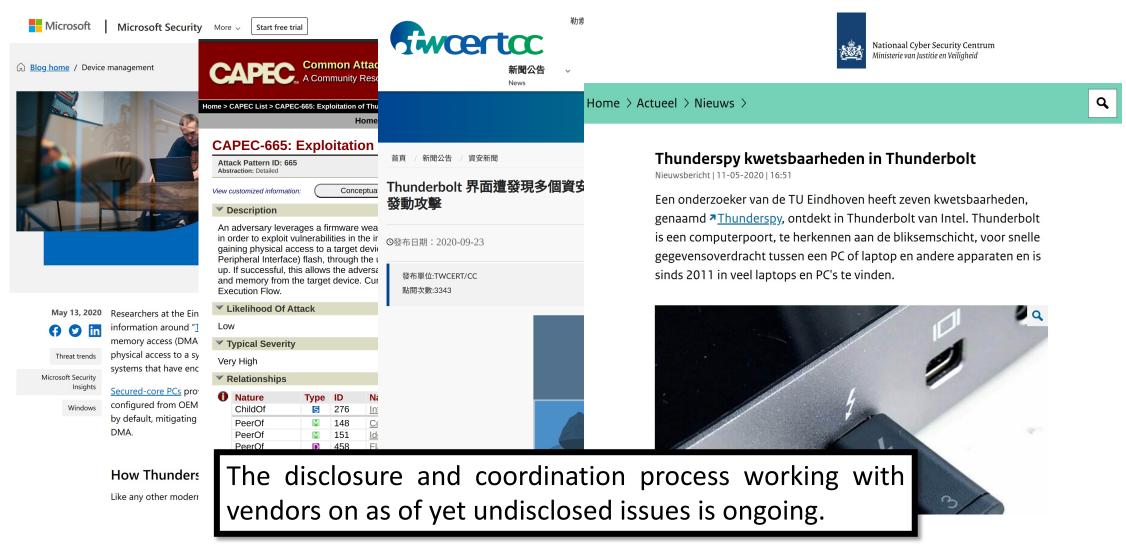
Intel reported potential security vulnerabilities, requiring physical access and dedicated equipment, in Intel Thunderbolt that could allow a malicious peripheral device to access secret data and change system behavior on systems with Thunderbolt interfaces.

Mitigation Strategy for Customers (what you should do to protect yourself):

Intel recommends the following guidelines for a robust DMA protection solution:

Lenovo issues BIOS updates to retroactively patch Kernel DMA Protection onto in-market ThinkPad systems

later) for systems with newer Intel processors (2019 or later).


Product Impact:

Kernel DMA Protections Supported

- ThinkPad P1 Gen. 1 (BIOS version N2EUJ26W or later)
- X1 Extreme Gen. 1 (BIOS version N2EUJ26W or later)
- P52 (BIOS version N2CUJ28W or later)
- P72 (BIOS version N2CUJ28W or later)
- ThinkPad P1 Gen. 2
- X1 Extreme Gen. 2, X1 Carbon Gen7/ 8, X1 Yoga 4th Gen, X390, X390 Yoga
- ThinkPad P43s, P53, P53s, P73
- ThinkPad T490/T490s, T590
- Lenovo S940-14IWL, Yoga S940-14IWL
- ThinkPad L13 1st Gen_Intel_CML,
- ThinkPad E490s /ThinkPad S3/ ThinkPad E490/E590/R490/R590
- ThinkPad L390 Yoga
- ThinkPad S2 Yoga 4th Gen
- ThinkPad L490/L590
- AIO A940

Current and future work

Feel free to contact me or ask a question today.

- 🕥 @0Xiphorus
- @ @0Xiphorus@infosec.exchange
- https://bjornweb.nl

