
Introduction to Platform Security

BJÖRN RUYTENBERG
EINDHOVEN UNIVERSITY OF TECHNOLOGY

2DMI20 – Software Security (2021)



Who Am I
Björn Ruytenberg
@0Xiphorus

Security researcher
Main interests: hardware and firmware security, sandboxing, input validation
More about me: https://bjornweb.nl

MSc student in Computer Science @ TUE
Master thesis:
“Thunderspy – When Lightning Strikes Thrice: Breaking Thunderbolt 3 Security”
• Presented at Black Hat USA, Chaos Communication Congress and other venues
• More details in next lecture

2

https://bjornweb.nl/


Roadmap

3

Introduction to Platform Security
• Protection Rings
• x86 System Architecture
• PCI Express Basics
• PCI Express Security
• System firmware (BIOS, UEFI)
• Operating System kernel
• Device drivers

• x86 Boot Process and Security
• BIOS vs. UEFI boot
• Secure Boot, Verified Boot, Measured Boot



Defense-in-Depth
• Goal: Protect information systems against adversaries, by
• Identifying vulnerabilities pre-deployment
• Mitigating vulnerabilities post-deployment through countermeasures

• Countermeasures are typically not perfect
• May be circumvented
• May introduce vulnerabilities of their own

• Defense-in-Depth: Ensure compromising one security control does not 
result in immediate, full system compromise; allow for fallback on 
additional controls



5

Protection Rings



Protection Rings
User Applications
• Compile time mitigations: strong typing, managed 

memory allocation, code review, static analysis, formal 
program verification, dynamic analysis (e.g. ASAN, 
UBSAN), unit testing

• Runtime mitigations: ASLR, NX, stack canaries, shadow 
stacks, CFI, language runtime sandboxing

• OS-provided runtime mitigations:
• User vs. kernel space: virtualize memory, IPC and 

hardware I/O
• Limit process privileges through

• Access control (user, file system, group policies, 
capabilities)

• Process sandboxing (jailing/chrooting, 
containerization)

6



Protection Rings

Operating System APIs
• User space cannot perform memory 

management, filesystem and driver I/O directly
• Consumes OS APIs, possibly through language 

runtime, such as
• Memory I/O, filesystem I/O, IPC: sockets, syscalls
• Graphics and sound subsystems: DirectX, OpenGL, 

Vulkan
• Driver interfacing: WMI, IOCTLs, block+char devices

• May require elevated privileges (e.g. root, 
capability provisioning)

7



Protection Rings

Device drivers
• GPU, NIC, HD Audio, USB host controllers + 

devices, internal storage

8



Protection Rings

OS Kernel
• Implements OS and device driver APIs
• Final user-controllable software layer

9



Protection Rings

Ring < 0
• Hypervisors (virtualization)
• Firmware (BIOS, UEFI)
• System Management Mode (SMM)
• Co-processors, including
• Cryptography + boot process attestation: 

TPMs (more later), Intel ME
• Trusted Execution Environments: Intel SGX, 

AMD PSP
• Silicon: CPU, GPU, storage, …

10



Protection Rings

Platform Security
• Operates at the intersection of software and 

hardware security
• Focuses on Ring 1 and below

11



12

PCI Express Essentials



PCI Express Architecture

13

Network Topology
• Root Complex
• Switch
• Endpoints
• PCIe to legacy bridge

(e.g. ISA/PCI/PCI-X)



PCI Express Architecture

14

Endpoints
• GPU
• HD Audio Controller
• {O,E,X}HCI Controller (USB)
• SATA Controller
• Ethernet/WiFi NIC
• …



Pit stop: Programmed I/O vs. Direct Memory Access

15

[Based on Hennessey et al. – Computer Architecture, A Quantitative Approach]



Pit stop: Programmed I/O vs. Direct Memory Access

16



Evolution of PCI Express: Legacy Stack

17

• Purpose-tailored peripheral interfaces
separate devices from PCIe network
• Primary incentives:
• Reduces redundant R&D on controller hardware
• Interface support guarantees device compatibility

with system
• Interface support ensures (basic) device functionality

is available without requiring vendor-specific drivers



Evolution of PCI Express: Use Cases

18

• Recent developments deprecate legacy stack in favor of “bare-metal” 
PCIe
• Why?
• Facilitate use cases that need more bandwidth and lower latencies
• Reduce load on CPU and system memory



Evolution of PCI Express: Externally

19

• PCIe is everywhere, even externally
• FireWire

• Abstracts end devices,
but exposes host DMA capability



Evolution of PCI Express: Externally

20

• PCIe is everywhere, even externally
• FireWire

• Abstracts end devices,
but exposes host DMA capability

• Thunderbolt
• Exposes entire PCIe domain

to end devices

No abstraction – device 
attached directly to PCIe



Evolution of PCI Express: Internally

21

• PCIe is everywhere, internally too
• Non-Volatile Memory express (NVMe)

bound to replace SATA as primary
storage interface



DMA attacks

22

• Thunderbolt 1: no protection against
physical attacks
• Plug in malicious device

→ Unrestricted R/W memory access (DMA)
• Access data from encrypted drives
• Persistent access possible, by e.g.

installing rootkit



DMA attacks (selected)

23

• Owned by an iPod [Dornseif 2004]
• First research to demonstrate practical DMA attack
• Malicious FireWire (FW) device presents Serial Bus Protocol 2 (SPB-2) endpoint, which triggers host controller to allocate DMA channel for fast bulk 

data transfers
• Several authors release exploitation tools [Boileau 2006] [Plegdon 2007]
• Improved upon for memory forensics [Witherden 2010]
• “Improved upon” in law enforcement spyware such as FinFireWire [Gamma 2011]

• Subverting Windows 7 x64 kernel with DMA attacks [Aumaitre 2009]
• First PCI-based attack through custom PCI device with DMA engine

• Inception [Maartmann-Moe 2014]
• Improves upon Witherden’s libforensic1394 by presenting virtual SBP-2 interface through ExpressCard, FW device + Thunderbolt-to-FW adapter

• PCILeech [Frisk 2016]
• First native PCIe attack
• DMA attack using FPGA with PCIe PHY (full size, ExpressCard, miniPCIe, M.2-NVMe), optionally tunneled through Thunderbolt enclosure
• Improved later with various functionality: e.g. dumping FDE keys, dumping UEFI memory regions, patching Windows lock screen process

• Thunderclap [Markettos et al. 2019]
• Replaces PCIe endpoint in TB device with malicious one, then performs DMA attack
• Does not break Security Levels access control, but relies on tricking user into authorizing malicious device

• Thunderspy [Ruytenberg 2020]
• First research to demonstrate full system compromise by breaking Thunderbolt security, including Security Levels
• Collection of seven critical vulnerabilities and nine exploitation scenarios affecting Thunderbolt 1, 2 and 3
• Details in next lecture

https://pacsec.jp/psj04/psj04-dornseif-e.ppt
https://security-assessment.com/files/presentations/ab_firewire_rux2k6-final.pdf
http://eh2008.koeln.ccc.de/fahrplan/attachments/1067_SEAT1394-svn-r432-paper.pdf
https://freddie.witherden.org/pages/ieee-1394-forensics.pdf
https://wikileaks.org/spyfiles/files/0/293_GAMMA-201110-FinFireWire.pdf
https://conference.hitb.org/hitbsecconf2010ams/materials/D2T2%20-%20Devine%20&%20Aumaitre%20-%20Subverting%20Windows%207%20x64%20Kernel%20with%20DMA%20Attacks.pdf
https://github.com/carmaa/inception
https://github.com/ufrisk/pcileech
https://thunderclap.io/
https://thunderspy.io/


24

The x86 Boot Process



Legacy Boot

• CPU is powered on, loads Basic Input/Output System (BIOS)

25



Legacy Boot

• BIOS
• Performs basic hardware initialization (e.g. RAM, GPU, storage) and testing (Power On Self Test)
• Enumerates hardware capabilities and provides basic abstractions to OS, including ACPI, SMM, WMI
• Loads Master Boot Record (MBR), executes embedded First Stage Boot Loader (e.g. GRUB/NTLDR)

26



Legacy Boot

• First Stage Boot Loader
• Mounts filesystem on first bootable partition
• Loads SSBL into RAM (e.g. second stage GRUB/NTLDR)

27



Legacy Boot

• Second Stage Boot Loader
• Mounts OS filesystem, loads kernel into RAM, executes kernel

28



Legacy Boot

• Operating System kernel
• Initializes memory management, I/O, process management subsystems
• Loads device drivers, enabling full peripheral functionality

29



Legacy Boot

• Operating System kernel
• Launches user mode processes

30



Legacy Boot – Limitations
• First BIOS implementations date from 1970’s
• Legacy technology renders code base difficult to maintain
• 16-bit “real mode” x86 assembly
• Typically limited to 1 MB EEPROM
• MBR imposes inflexible and resource-constrained boot process

• FSBL limited to 440 bytes, need to resort to SSBL for further system initialization
• Partition table limited to 4 partitions
• Uses 32-bits for logical block addressing, limiting storage to 2 TB (16 TB using “Advanced 

Format”)
• Monolithic architecture complicates adding new hardware support
• Single-threaded code preventing parallelizing hardware initialization, leading 

to extended boot times
• No security: boot process can be hijacked by malicious code

31



UEFI Boot
Unified Extensible Firmware Interface (UEFI)
• Early versions developed exclusively by Intel (2000). Contributed to UEFI Forum and subsequently 

adopted by
• Apple, for Intel Macs (2006 – today)
• x86 OEM/ODMs (2011 – today)
• Recent ARM and PowerPC implementations available, but not commonly used

• Stored on SPI flash, typically up to 64 MB
• GUID Partition Table (GPT) boot alleviates most MBR limitations

• Unified boot loader binary stored on FAT32-formatted EFI System Partition (ESP)
• Partition table enables up to 128 partitions
• Uses 64 bits for logic block addressing – storage addressable up to 9.4 ZB

• Boot stages
• Security Phase (SEC): Minimal assembly to initialize microcode and co-processors (Intel ME, AMD PSP, TPM)
• Pre-EFI Initialization (PEI): Basic hardware initialization + POST, ACPI sleep/resume handling
• Driver Execution Environment (DXE): initialize boot time device drivers
• Transient System Load (TSL): Load user-selected boot loader from ESP
• Runtime (RT): UEFI hands over control to OS boot loader

• Note: often still referred to as “BIOS” in vendor documentation, literature

32



UEFI Boot

What about security?
33



UEFI Boot – Attack Vectors

34



UEFI Boot – Attack Vectors

35



UEFI Boot – Attack Vectors

36



Addressing UEFI Boot Attack Vectors

37

• Verified Boot / Boot Guard
• Protects against malicious firmware implants
• Cryptographically verifies UEFI integrity

• Driver signing
• Ensures driver authenticity (originates from device vendor) and integrity (tamper-

resistance) 
• OS vendors require device vendors to submit drivers for evaluation

• Linux (kernel.org): submit code for functional + security review
• Windows: semi-blackbox testing through WHQL program

• Upon passing verification
• Linux: distribution vendors sign pre-compiled driver binaries
• Windows: Microsoft signs driver’s commercial release certificate; device vendor signs driver 

using private key to latter certificate

• Secure Boot
• Protects against malicious, unsigned code early in boot process
• Cryptographically verifies boot chain: OS bootloader, kernel, drivers



Secure Boot: A Closer Look

38

• Protects against malicious, unsigned code early in boot process
• Cryptographically verifies boot chain: OS bootloader, kernel, drivers

Platform Key pair (pub, priv)
• Establishes root of trust
• Priv signs KEK database

Allowlisted CAs and Image Hashes

Blocklisted CAs and Image Hashes
(overrides allow list)

Key Exchange Keys (pub, priv)
• Priv signs db/dbx
• Controls modifications to 

db/dbx

[Based on “Understanding the UEFI Secure Boot Chain” –
TianoCore/EDK2]

https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/secure_boot_chain_in_uefi/uefi_secure_boot


Secure Boot: A Closer Look

39

• Protects against malicious, unsigned code early in boot process

• Cryptographically verifies boot chain: OS bootloader, kernel, drivers

[Based on “Understanding the UEFI Secure 
Boot Chain” – TianoCore/EDK2]

https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/secure_boot_chain_in_uefi/uefi_secure_boot


Secure Boot: A Closer Look

40

• Secure Boot trust model similar to PKI, but with significant exceptions
• OEM-controlled PK; Root CAs exclusively controlled by Microsoft

• Raises concerns on Secure Boot chain ownership

Platform Key pair (pub, priv)
• Establishes root of trust
• Priv signs KEK database
• Owned by OEM

Allowlisted CAs and Image Hashes
• Microsoft Windows Production PCA 2011

Blocklisted CAs and Image Hashes
(overrides allow list)

Key Exchange Keys (pub, priv)
• Priv signs db/dbx entries
• Controls modifications to 

db/dbx

[Based on “Understanding the UEFI Secure Boot Chain” –
TianoCore/EDK2]

https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/secure_boot_chain_in_uefi/uefi_secure_boot


Secure Boot: A Closer Look

41

• Recent UEFI implementations enable user-replaceable PK
• Secondary Microsoft Root CA signs third party boot loaders

• Red Hat: SHIM first stage boot loader
• Used to chainload e.g. GRUB2, systemd-boot, EFI Stub
• Enables users to self-sign boot loaders + drivers using “Machine Owner Key” (MOK)

• Anti-malware and imaging solutions, e.g. live USB flash drive environment

Platform Key pair (pub, priv)
• Establishes root of trust
• Priv signs KEK database
• Owned by OEM

Allowlisted CAs and Image Hashes
• Microsoft Windows Production PCA 2011
• Microsoft 3rd Party UEFI CA

Blocklisted CAs and Image Hashes
(overrides allow list)

Key Exchange Keys (pub, priv)
• Priv signs db/dbx entries
• Controls modifications to 

db/dbx

[Based on “Understanding the UEFI Secure Boot Chain” –
TianoCore/EDK2]

https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/secure_boot_chain_in_uefi/uefi_secure_boot


Secure Boot: How Secure is It?

42

• Boot chain security relies on
• Root and subordinate CAs ensuring appropriate key management practices
• Root and subordinate CAs signing only trustworthy binaries



Secure Boot: How Secure is It?

43

• Boot chain security relies on
• Root and subordinate CAs ensuring appropriate key management practices
• Root and subordinate CAs signing only trustworthy binaries
• Signed binaries verifying any subsequently chainloaded binaries



Secure Boot: How Secure is It?

44

• Boot chain security relies on
• Root and subordinate CAs ensuring appropriate key management practices
• Root and subordinate CAs signing only trustworthy binaries
• Signed binaries verifying any subsequently chainloaded binaries
• Signed binaries not introducing vulnerabilities of their own



Secure Boot: How Secure is It?

45

• Boot chain security relies on
• Root and subordinate CAs ensuring appropriate key management practices
• Root and subordinate CAs signing only trustworthy binaries
• Signed binaries verifying any subsequently chainloaded binaries
• Signed binaries not introducing vulnerabilities of their own
• If all fails, CAs timely identifying affected public keys/binaries; OEMs distributing dbx updates



Measured Boot

46

• Requires autonomous, distinct agent that continuously monitors boot process



Measured Boot

47

• Typical x86 approach employs TPM
• Learns about known good state, i.e. “one-time” setup that computes hash over UEFI image, UEFI 

config, boot loader image.
• Stores state as PCR tuple. Continuously computes PCR on each boot cycle – PCR changes ó boot 

chain modified



References

48

Obligatory reading
• Unified Extensible Firmware Interface Specification v2.9 (2021)

• Chapter 32 – Secure Boot

Background reading
• Andrew S. Tanenbaum and Herbert Bos, “Modern Operating Systems” (2014)

• Chapter 1 – Introduction, 5 – Input/Output, 9 – Security
• Trusted Computing Group, “Using the TPM to Solve Today’s Most Urgent Cybersecurity 

Problems” (2014)
• Slides 18 - 28

• Trusted Computing Group, “Trusted Platform Module 2.0 Library – Part 1: Architecture” 
(2019)
• Chapter 11 – TPM Architecture

https://uefi.org/sites/default/files/resources/UEFI_Spec_2_9_2021_03_18.pdf
https://tue.on.worldcat.org/v2/search/detail/964528698?queryString=ti%3D%20Modern%20operating%20systems%20&clusterResults=true&groupVariantRecords=false
https://trustedcomputinggroup.org/wp-content/uploads/17.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf


Admin

49

• Next lecture
• Case study: Thunderspy

• Quiz
• Verify your understanding of material

• Questions?
• Live session on Dec 14
• Reach out via email


