" llllu l”

""'"m-n

H” JJ

TIYIRINTIE

|
g
.‘"! m"d"‘ ‘1M| w“

i Llu llr. 1"y ﬂml ey
MIIIJWM

n ll
Iy ""llH 2o
[l e+

LTI

. BIORN RUYTENBERG S
EINDHOVEN UNIVERSITY OF TECHNOLOGY

2DMI20 - Software Security (2021)

Bjorn Ruytenberg
@0Xiphorus

Security researcher
Main interests: hardware and firmware security, sandboxing, input validation

More about me: https://bjornweb.nl

MSc student in Computer Science @ TUE

Master thesis:
“Thunderspy — When Lightning Strikes Thrice: Breaking Thunderbolt 3 Security”

* Presented at Black Hat USA, Chaos Communication Congress and other venues

* More details in next lecture

https://bjornweb.nl/

Introduction to Platform Security
* Protection Rings

e Xx86 System Architecture

* PCl Express Basics

* PCl Express Security

e System firmware (BIOS, UEFI)
Operating System kernel
e Device drivers

* X86 Boot Process and Security

e BIOS vs. UEFI boot
e Secure Boot, Verified Boot, Measured Boot

* Goal: Protect information systems against adversaries, by
* |dentifying vulnerabilities pre-deployment
* Mitigating vulnerabilities post-deployment through countermeasures

e Countermeasures are typically not perfect
* May be circumvented
* May introduce vulnerabilities of their own

* Defense-in-Depth: Ensure compromising one security control does not
result in immediate, full system compromise; allow for fallback on
additional controls

Protection Rings

Least
privileged

I

Most
privileged

Ring 3
User Applications

User Applications

* Compile time mitigations: strong typing, managed
memory allocation, code review, static analysis, formal
program verification, dynamic analysis (e.g. ASAN,
UBSAN), unit testing

* Runtime mitigations: ASLR, NX, stack canaries, shadow
stacks, CFl, language runtime sandboxing

* OS-provided runtime mitigations:

e User vs. kernel space: virtualize memory, IPC and
hardware I/O
* Limit process privileges through
» Access control (user, file system, group policies,
capabilities)
* Process sandboxing (jailing/chrooting,
containerization)

Least
privileged

I

Most
privileged

Ring 3
User Applications

Ring 2
Privileged OS APIs

Operating System APIs

User space cannot perform memory
management, filesystem and driver |/O directly
Consumes OS APIs, possibly through language

runtime, such as
 Memory I/O, filesystem I/O, IPC: sockets, syscalls
* Graphics and sound subsystems: DirectX, OpenGL,
Vulkan
* Driver interfacing: WMI, I0CTLs, block+char devices

May require elevated privileges (e.g. root,
capability provisioning)

Least
privileged

Most
privileged

Ring 3
User Applications

Ring 2
Privileged OS APIs

Ring 1
Device Drivers

Device drivers

GPU, NIC, HD Audio, USB host controllers +
devices, internal storage

Least
privileged

Most
privileged

Ring 3
User Applications

Ring 2
Privileged OS APIs

Ring 1
Device Drivers

0OS Kemel

OS Kernel

Implements OS and device driver APls
Final user-controllable software layer

Least
privileged

I

Most
privileged

10

Ring 3
User Applications

Ring 2
Privileged OS APlIs

Ring 1
Device Drivers

Ring 0
0OS Kemel

Ring< 0

Hypervisors (virtualization)
Firmware (BIOS, UEFI)
System Management Mode (SMM)

Co-processors, including
* Cryptography + boot process attestation:

TPMs (more later), Intel ME
 Trusted Execution Environments: Intel SGX,

AMD PSP
Silicon: CPU, GPU, storage, ...

Platform Security

e Operates at the intersection of software and
hardware security

* Focuses on Ring 1 and below

Ring 1
Device Drivers

Least SR
privileged P Rngo
OS Kemel
l ‘ ‘
Most N

privileged

11

PCIl Express Essentials

PCIl Express Architecture

Network Topology DR SDRAM
* Root Complex PCle (PCH) / FSB Northbridge)
. .
SWltCh' PCle ;:)i :gcel/ISA _ i -
 Endpoints
 PCle to legacy bridge -—

Endpoints

(e.g. ISA/PCI/PCI-X)

13

PCIl Express Architecture

DDR SDRAM

Endpoints
¢ GPU PCle (PCH) / FSB (Northbridge)
 HD Audio Controller
« {O,E,X}HCI Controller (USB) Bridge AR
* SATA Controller

 Ethernet/WiFi NIC et

PCle to PCI/ISA

PCle

PCle

PCle PCle

HD Audio
Controller PCle

PCle PCle
XxHCI Controller SATA Controller Ethernet NIC WiFi NIC
usB SATA

L USB device L SATA SSD
14

15

Pit stop: Programmed /O vs. Direct Memory Access

> Issue PIO read
command

[Read status of I/0]
’_)\ module

Not ready

Read word from 1/0]
module

v

[Write word into]
memory

No

Yes
v

[Process data]

v

Next instruction

CPU » I/O

I/0 » CPU

I/0 » CPU

CPU » RAM

[Issue DMA read } ERE 5 15

command

v

Next instruction

Interrupt-)[Process data } /0 » CPU

v

Next instruction

[Based on Hennessey et al. — Computer Architecture, A Quantitative Approach]

Pit stop: Programmed /O vs. Direct Memory Access

CPU |
Memoryv

Cor* _uiler

DDR SDRAM

PCle (PCH) / F4B (Northbridge)

PCle to PCI/ISA

y < GPU
Eridae sot Complex

PCI/ISA
Endpoints

Swi ch A

PCle

Swi\shB J] HpAudio
Controller

xHCI Controller Ethernet NIC W iFi NIC

usB

]
_ USB device L SATA SSD

* Primary incentives:
e Reduces redundant R&D on controller hardware

* Purpose-tailored peripheral interfaces W
separate devices from PCle network
* Interface support guarantees device compatibility
with system e I -

SATA
* Interface support ensures (basic) device functionality [osoaone | [s
is available without requiring vendor-specific drivers

17

* Recent developments deprecate legacy stack in favor of “bare-metal”
PCle

* Why?
e Facilitate use cases that need more bandwidth and lower latencies
e Reduce load on CPU and system memory

18

Evolution of PCl Express: Externally

DDR SDRAM

* PCle is everywhere, even externally

° F I re Wl re PCle (PCH) / FSB (Northbridge)

* Abstracts end devices,
but exposes host DMA capability Root Complex

PCle

//O‘ N @

PCl PCle
= FireWire
= Controller xHCI Controller SATA Controller
FireWire UsB SATA
] I—]

|
L FW device _ USB device SATA SSD

19

Evolution of PCl Express: Externally

DDR SDRAM

* PCle is everywhere, even externally

o F I re Wl re PCle (PCH)/FSB (Northbridge)
* Abstracts end devices,
but exposes host DMA capability Root Complex
 Thunderbolt PCle

* Exposes entire PCle domain
to end devices

No abstraction — device
{ attached directly to PCle Q
PCIe
() THUNDERBOLT. .

|
_ FW device L USB device SATA SSD

PCI

20

Evolution of PCI Express: Internally

|

DDR SDRAM

* PCle is everywhere, internally too

* Non-Volatile Memory express (NVMe) PCle (PCH)/ FSB (Northbridge)
bound to replace SATA as primary
storage interface Root Complex

PCle

C

PCle

PCle PCI

xHCI Controller SATA ont’ der
l
7 EXPRESS) L FW device | | evice

21

DMA attacks

* Thunderbolt 1: no protection against cPu |

Memorv

physical attacks Cor* tef

DDR SDRAM

PCle (PCH) / F4§ (Northbridge)

* Plug in malicious device
—> Unrestricted R/W memory access (DMA) Rr st Complex

* Access data from encrypted drives

* Persistent access possible, by e.g. SWi chiA
installing rootkit

Switch B

evice

22

23

Owned by an iPod [Dornseif 2004]

First research to demonstrate practical DMA attack

. (I;/Iallaous]Ic=|reW|re (FW) device presents Serial Bus Protocol 2 (SPB-2) endpoint, which triggers host controller to allocate DMA channel for fast bulk
ata transfers

* Several authors release exploitation tools [Boileau 2006] [Plegdon 2007]
* Improved upon for memory forensics [Witherden 2010]
* “Improved upon” in law enforcement spyware such as FinFireWire [Gamma 2011]

Subverting Windows 7 x64 kernel with DMA attacks [Aumaitre 2009]
* First PCl-based attack through custom PCI device with DMA engine

Inception [Maartmann-Moe 2014]

* Improves upon Witherden’s 1libforensic1394 by presenting virtual SBP-2 interface through ExpressCard, FW device + Thunderbolt-to-FW adapter

PClLeech [Frisk 2016]
* First native PCle attack
* DMA attack using FPGA with PCle PHY (full size, ExpressCard, miniPCle, M.2-NVMe), optionally tunneled through Thunderbolt enclosure
* Improved later with various functionality: e.g. dumping FDE keys, dumping UEFI memory regions, patching Windows lock screen process

Thunderclap [Markettos et al. 2019]

* Replaces PCle endpoint in TB device with malicious one, then performs DMA attack
* Does not break Security Levels access control, but relies on tricking user into authorizing malicious device

Thunderspy [Ruytenberg 2020]
* First research to demonstrate full system compromise by breaking Thunderbolt security, including Security Levels
* Collection of seven critical vulnerabilities and nine exploitation scenarios affecting Thunderbolt 1, 2 and 3
* Details in next lecture

https://pacsec.jp/psj04/psj04-dornseif-e.ppt
https://security-assessment.com/files/presentations/ab_firewire_rux2k6-final.pdf
http://eh2008.koeln.ccc.de/fahrplan/attachments/1067_SEAT1394-svn-r432-paper.pdf
https://freddie.witherden.org/pages/ieee-1394-forensics.pdf
https://wikileaks.org/spyfiles/files/0/293_GAMMA-201110-FinFireWire.pdf
https://conference.hitb.org/hitbsecconf2010ams/materials/D2T2%20-%20Devine%20&%20Aumaitre%20-%20Subverting%20Windows%207%20x64%20Kernel%20with%20DMA%20Attacks.pdf
https://github.com/carmaa/inception
https://github.com/ufrisk/pcileech
https://thunderclap.io/
https://thunderspy.io/

The x86 Boot Process

Legacy Boot

[(]
; BIOS :
' Initialization

EEPROM

Hardware

* CPU is powered on, loads Basic Input/Output System (BIOS)

25

Legacy Boot

Time flow—>»
First Stage
BIOS
initialization Boot Loader (FSBL)
Master Boot Record (MBR)

........ PR o o VB
' Basic video (VGA), RAM Advanced Configuration and Power Interface System Management Mode = Windows Management Instrumentation
----- » and peripheral I/O (ACPI) (SMM) (WMI)

BIOS
Hardware

* BIOS

* Performs basic hardware initialization (e.g. RAM, GPU, storage) and testing (Power On Self Test)
* Enumerates hardware capabilities and provides basic abstractions to OS, including ACPl, SMM, WMI
* Loads Master Boot Record (MBR), executes embedded First Stage Boot Loader (e.g. GRUB/NTLDR)

26

Legacy Boot

Time flow—>»

First Stage Second Stage
Boot Loader (FSBL) g Boot Loader (SSBL)
Master Boot Record (MBR) Boot Sector

BIOS
Initialization

' Basic video (VGA), RAM Advanced Configuration and Power Interface System Management Mode = Windows Management Instrumentation
----- » and peripheral I/O (ACPI) (SMM) (WMI)
BIOS
Hardware

* First Stage Boot Loader

* Mounts filesystem on first bootable partition
* Loads SSBL into RAM (e.g. second stage GRUB/NTLDR)

27

Legacy Boot

First Stage Second Stage Kemel

Boot Loader (FSBL) g Boot Loader (SSBL) Initialization
Master Boot Record (MBR) Boot Sector

Initialization

A
: E 0S APIs
E ! Virtual Memory TTY, flesysterns PC
E crex: > Paging Page Repl Netwarking stack Proa/Thread Creations Term
i Page Caching CPU schedulng
E Memory Mgmt Subsystem | | 10 Subsystem Process Mgmt subsystem
Operating sistem Kernel
E Basic video (VGA), RAM Advanced Configuration and Power Interface System Management Mode = Windows Management Instrumentation
----- » and peripheral /O (ACPI) (SMM) , (WMI)
BIOS
Hardware

e Second Stage Boot Loader
* Mounts OS filesystem, loads kernel into RAM, executes kernel

28

Legacy Boot

Time flow—>»
BIOS First Stage Second Stage Kemel Device Driver
initialization Boot Loader (FSBL) g Boot Loader (SSBL) Initialization Initialization
Master Boot Record (MBR) Boot Sector Boat Partition 0S Partition
e PR oo d L v s s s s e T HEOOVBED. . F 50 oo s s s o sl
' ' :
OS APIs
Virtual Memory E TTY, flesystemns PC
E_ oy Paging Page Repl E Netwarking stack Proc/Thread Creations Torm
Page Caching :" Device Drivers CPU schedulng
Memory Mgmt Subsystem 10 Subsystem Process Mgmt subsystem
Operating Sistem Kernel
' Basic video (VGA), RAM Advanced Configuration and Power Interface System Management Mode = Windows Management Instrumentation
----- » and peripheral I/O (ACPI) (SMM) (WMI)
BIOS
Hardware

e Operating System kernel
* Initializes memory management, |I/O, process management subsystems
* Loads device drivers, enabling full peripheral functionality

29

Legacy Boot

E i E First Stage Second Stage Kemel Device Driver User Mode i
! Inialization Y : Boot Loader (FSBL) g Boot Loader (SSBL) Initialization Initialization Processes :
! E ! Master Boot Record (MBR) Boot Sector 0S Partition OS Partition i
e BEPRONL. o | Bsessrsarmama s e HDDVBEDL oo T s o s sosms

[' :

= = 5, US AFKS

E E Virtual Memory E TTY, flesystemns IPC

i E_ -- > Paging Page Repl E Netwarking stack ProciThread Creations Toerm

' ‘ Page Caching :<> Device Drivers CPU schedulng

E jMemory Mgmt Subsystem | | 1O Subsystem | | Process Mgmt subsystem |

Operatlng%stem Kernel

E Basic video (VGA), RAM Advanced Configuration and Power Interface System Management Mode =~ Windows Management Instrumentation |

---- il and peripheral /O Il (ACPI) I (SMM) || (WMI)

BIOS
Hardware

e Operating System kernel
* Launches user mode processes

30

* First BIOS implementations date from 1970’s

* Legacy technology renders code base difficult to maintain

* 16-bit “real mode” x86 assembly
* Typically limited to 1 MB EEPROM

MBR imposes inflexible and resource-constrained boot process
* FSBL limited to 440 bytes, need to resort to SSBL for further system initialization
* Partition table limited to 4 partitions

» Uses 32-bits for logical block addressing, limiting storage to 2 TB (16 TB using “Advanced
Format”)

Monolithic architecture complicates adding new hardware support

Single-threaded code preventing parallelizing hardware initialization, leading
to extended boot times

No security: boot process can be hijacked by malicious code

Unified Extensible Firmware Interface (UEFI)

* Early versions developed exclusively by Intel (2000). Contributed to UEFI Forum and subsequently
adopted by

* Apple, for Intel Macs (2006 — today)
* x86 OEM/ODMs (2011 - today)
* Recent ARM and PowerPC implementations available, but not commonly used

» Stored on SPI flash, typically up to 64 MB

e GUID Partition Table (GPT) boot alleviates most MBR limitations
* Unified boot loader binary stored on FAT32-formatted EFI System Partition (ESP)
* Partition table enables up to 128 partitions
* Uses 64 bits for logic block addressing — storage addressable up to 9.4 ZB

* Boot stages
* Security Phase (SEC): Minimal assembly to initialize microcode and co-processors (Intel ME, AMD PSP, TPM)
* Pre-EFl Initialization (PEIl): Basic hardware initialization + POST, ACPI sleep/resume handling
* Driver Execution Environment (DXE): initialize boot time device drivers
* Transient System Load (TSL): Load user-selected boot loader from ESP
* Runtime (RT): UEFI hands over control to OS boot loader

* Note: often still referred to as “BIOS” in vendor documentation, literature

32

UEFI Boot

Unified Kemel Device Driver User Mode
Boot Loader Initialization Initialization Processes

EF1 System Partition 0S Partition 0S Partition

T |
' ' T
! : ' 0S APIs
E E Virtual Memory :E TTY, flesystemns | IPC
E E_ --> Paging Page Repl E Netwarking stack Proc/Thread Creations Torm
! Page Caching :-b Device Drivers CPU schedulng
E Memory Mgmt Subsystem | ’ 11O Subsystem | | Process Mgmt subsystem |
E Operatlng_Séstem Kernel
E Basic video (VGA) RAM ' Advanced Cbn?iguration and Power Interface | éystem Management Mode = Windows Management Instrumentation
esmss » | and peripheral /O 1| (ACPI) \ (SMM) 11 (WMI)
UEFI
Hardware

What about security?

34

Time flow—3p

UEFI Boot — Attack Vectors

Unified Kemel Device Driver User Mode
Boot Loader Initialization Initialization Processes
EFl System Partition Boot Partition 0S Partition 0OS Partition

Home > Security

NEWS

.. ROOtKit infection requires Windows
== reinstall, says Microsoft

UEFI Boot — Attack Vectors

Time flow—yp

Unified Kemel Device Driver User Mode
Boot Loader Initialization Initialization Processes
EFl System Partition 0S Partition 0S Partition

BLEEPINGCOMPUTER

DOWNLOADS ~ VIRUS REMOVAL GUIDES ~ TUTORIALS ~

FinFisher malware hijacks Windows Boot Manager with UEFI

Basicvideo bootkit
f==s== > and perif

By Sergiu Gatlan September 28, 2021 01:46 PM 0

UEFI Boot — Attack Vectors

> 4 > 4 > 4

Bootkit
(UEFI Implant) BODIkIL Hont

Time flow—3p

...

Unified Kemel Device Driver User Mode
Boot Loader Initialization Initialization Processes

EF1 System Partition Boot Partition OS Partition OS Partition

..

= Forbes

IPC

Prec/Thread Creations Term

Dec 18, 2020, 07:08am EST

Ransomware’s Next
5 | Nasty Surprise: Pay Up
| dberatio Or We’ll Brick Your
PC’s UEFI Firmware

CPU schedulng

Process Mgmt subsystem

Management Instrumentation
(WMI)

‘ John E. Dunn Contributor ®
@ Cybersecurity
" & Trying to explain cybersecurity woes and why
they matter

* Verified Boot / Boot Guard

e Protects against malicious firmware implants
e Cryptographically verifies UEFI integrity

* Driver sighing
e Ensures driver authenticity (originates from device vendor) and integrity (tamper-
resistance)

e OS vendors require device vendors to submit drivers for evaluation
* Linux (kernel.org): submit code for functional + security review
* Windows: semi-blackbox testing through WHQL program

e Upon passing verification
* Linux: distribution vendors sign pre-compiled driver binaries

* Windows: Microsoft signs driver’s commercial release certificate; device vendor signs driver
using private key to latter certificate

* Secure Boot
* Protects against malicious, unsigned code early in boot process
* Cryptographically verifies boot chain: OS bootloader, kernel, drivers

Secure Boot: A Closer Look

* Protects against malicious, unsigned code early in boot process
* Cryptographically verifies boot chain: OS bootloader, kernel, drivers

Platform Key pair (pub, priv)
* Establishes root of trust
* Priv signs KEK database

Allowlisted CAs and Image Hashes

Blocklisted CAs and Image Hashes
(overrides allow list)

38

1. Enroll

]
]
I
4
2B. Signature,
Verification N

3
By

PEI FV

Authenticated

Variable 2C.
PK Signed
Image
KEK
db Certificate

dbx Certificate

Variable

DXE FV

Image Verify

OpRom.efi

Certificate
|| +Signinfo

2A. Signed Image
Discover

OslLoader.efi

Certificate
+ Signinfo

L._J Key Exchange Keys (pub’ priv)

* Priv signs db/dbx
* Controls modifications to
db/dbx

[Based on “Understanding the UEFI Secure Boot Chain” —

TianoCore/EDK2]

https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/secure_boot_chain_in_uefi/uefi_secure_boot

* Protects against malicious, unsigned code early in boot process

* Cryptographically verifies boot chain: OS bootloader, kernel, drivers
Certificate Chain

Load Image Root CA ~

NO

Signed mage Check image hash I Fail \ Sub CA 4> Signs

YES Vendor Cert

‘> + Signs
Bootloader Binary

Signed Image

For each image signature

YES

Pass signature

Fail
check by dbx &

NO

2 YES
Pass signature

check by db

NO
YES YES

Image hash in dbx Fail Image hash in dbx

NO

Image hash in db [Based on “Understanding the UEFI Secure
o Boot Chain” — TianoCore/EDK2]

https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/secure_boot_chain_in_uefi/uefi_secure_boot

Secure Boot: A Closer Look

» Secure Boot trust model similar to PKI, but with significant exceptions
* OEM-controlled PK; Root CAs exclusively controlled by Microsoft

* Raises concerns on Secure Boot chain ownership

PEI FV
1. Enroll
Platform Key pair (pub, priv) —-yl Authenticated OpRom.efi
* Establishes root of trust ====evee iy Vanable 2C: / Certificate T
* Privsigns KEK database e Ll PK Signed _ﬂ + Signinfo
* Owned by OEM Image -
KEK b rsag I T [pep—— Key Exchange Keys (pub’ priv)
" :) * Priv signs db/dbx entries
Allowlisted CAs and Image Hashesccceccceunanns Ak db Il Certificate / zi 5'$“ed mage * Controls modifications to
* Microsoft Windows Production PCA 2011 ' | gl db/dbx
Blocklisted CAs and Image Hashes ~ ===========""" yeuer B dbx || Certificate
(overrides allow list) | | B e
' lr' Variable Certificate
) i + Signinfo
2B. Slgnature\\ DXE FV
Verification
i Image Verify

[Based on “Understanding the UEFI Secure Boot Chain” — TU/
40 TianoCore/EDK2] e

https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/secure_boot_chain_in_uefi/uefi_secure_boot

* Recent UEFI implementations enable user-replaceable PK

* Secondary Microsoft Root CA signs third party boot loaders

* Red Hat: SHIM first stage boot loader
* Used to chainload e.g. GRUB2, systemd-boot, EFI Stub
* Enables users to self-sign boot loaders + drivers using “Machine Owner Key” (MOK)

* Anti-malware and imaging solutions, e.g. live USB flash drive environment

PEI FV
1. Enroll
Platform Key pair (pub, priv) _— Authenticated OpRom.efi
* Establishes root of trust ~ ==r=eeauniil 0 Venable 2C: /) Certificate
e Privsigns KEK database e r PK Signed , + Signinfo
* Owned by OEM Image
KEK 1 b 1gag i L_._J Key Exchange Keys (pub’ priv)
: , * Priv signs db/dbx entries
Allowlisted CAs and Image Hashescccecceaeens s db Certificate &tk 5'$“9d mags * Controls modifications to
* Microsoft Windows Production PCA 2011] o db/dbx
« Microsoft 3 Party UEFI CA AR P DTS
aenstts]
Blocklisted CAs and Image Hashes ~*"""" : 4 | OsLoader.efi
(overrides allow list) / Variable e
; 1\ + Signinfo
2B. Slgnature\ DXE FV
Verification "\
4l Rt Image Verify e [Based on “Understanding the UEFI Secure Boot Chain” — TU/e
TianoCore/EDK2]

https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/secure_boot_chain_in_uefi/uefi_secure_boot

* Boot chain security relies on

* Root and subordinate CAs ensuring appropriate key management practices
* Root and subordinate CAs signing only trustworthy binaries

@ Alex lonescu

‘.’ ¥’ @aionescu

1. Sign Kaspersky UEFI Rootkit (oops, “loader”) even
though this wasn’t what the program was meant for,
putting *everyone* at risk thanks to the DB policy.

2. Finally release revocation (thanks @intOx6)

3. Pull back the release and indicate you won’t offer it
anymore.

FFS MSFT...

B2 Windows Update & @WindowsUpdate - Feb 15, 2020

Standalone security update (KB4524244) has been removed and will not re-
offered. This does not affect any other update, including Latest Cumulative
Updates (LCUs). For more info click here: docs.microsoft.com/en-us/windows/

9:39 PM - Feb 15, 2020 - Twitter for iPhone

42

* Boot chain security relies on

* Root and subordinate CAs ensuring appropriate key management practices
* Root and subordinate CAs signing only trustworthy binaries

* Signed binaries verifying any subsequently chainloaded binaries

= threat VOSE Cloud Security / Malware

Vulnerabilities InfoSec Insiders Webinars

Microsoft Mistakenly Leaks Secure Boot
Key

August 11, 2016

P Microsoft inadvertently published a Secure Boot “golden key” policy

that allows for self-signed or unsigned binaries to be loaded on
Windows devices.

43

* Boot chain security relies on

44

Root and subordinate CAs ensuring appropriate key management practices
Root and subordinate CAs signing only trustworthy binaries

Signed binaries verifying any subsequently chainloaded binaries

Signed binaries not introducing vulnerabilities of their own

BootHole

July 29,2020 / Eclypsium
“BootHole” vulnerability in the GRUB2 bootloader opens up Windows and Linux devices
using Secure Boot to attack. All operating systems using GRUB2 with Secure Boot must
release new installers and bootloaders.

* Boot chain security relies on

Root and subordinate CAs ensuring appropriate key management practices

Root and subordinate CAs signing only trustworthy binaries

Signed binaries verifying any subsequently chainloaded binaries

Signed binaries not introducing vulnerabilities of their own

If all fails, CAs timely identifying affected public keys/binaries; OEMs distributing dbx updates

ﬁ ValdikSS @ValdikSS - Feb 14, 2020
\ '} Microsoft has revoked Kaspersky vulnerable UEFI bootloader which could
1 be used to circumvent Secure Boot. The update adds bootloader hash to
dbx list, distributed via Windows Update. No dbx updates from UEFI Forum

yet.
gist.github.com/ValdikSS/fO54e...

0 Jay (Jeremiah) Cox @intOx6 - Feb 14, 2020
Replying to @kaspersky and @ValdikSS
support.microsoft.com/en-us/help/452...

45

Measured Boot

Time flow—>»

Unified Device Driver User Mode
Boot Loader Initialization Initialization Processes

EF1 System Partition Boot Partition OS Partition 0S Partition

T T T T T T T T T T T T T T T T T T TS T T ST R 0

' ' T
e s 2 OS APIs
E Platform Configuration Register (PCR) measurements ‘ e r— E e oG
E nyptogmph'c Services E’ Paging Page Repl i Netwarking stack ProciThread Creations+ Torm
E Trusted Platform Module | Page Caching > Device Drivers CPU schaduing
B S S S S RS S R S : Memory Mgmt Subsystem | | /O Subsystem | | Process Mgmt subsystem |

| Operating sistem Kernel

E Basic video (VGA), RAM Advanced Configuration and Power Interface | System Management Mode =~ Windows Management Instrumentation

erss » | and peripheral /'O (ACPI) » (SMM) ‘ (WMI)

UEFI
Hardware

* Requires autonomous, distinct agent that continuously monitors boot process

46

Measured Boot

Unified Device Driver User Mode
Boot Loader Initialization Initialization Processes

EFl System Partition 0S Partition 0S Partition

;
i OS APIs
Platform Configuration Register (PCR) measurements ' = E T i o
E Cryptographic Services ;> Paging Pagalepl | ! Netwarking stack ProciThread Croaions Tem
E Trusted Platform Module E Page Caching :* Device Drivers CPU scheduling
A S e = e e Memory Mgmt Subsystem 1O Subsystem Process Mgmt subsystem
E Operating Sistem Kernel
E Basic video (VGA), RAM Advanced Configuration and Power Interface System Management Mode = Windows Management Instrumentation
------ > and peripheral /O (ACPI) (SMM) (WMI)
UEFI
Hardware

* Typical x86 approach employs TPM

* Learns about known good state, i.e. “one-time” setup that computes hash over UEFI image, UEFI
config, boot loader image.

e Stores state as PCR tuple. Continuously computes PCR on each boot cycle — PCR changes < boot
chain modified

.

Obligatory reading

* Unified Extensible Firmware Interface Specification v2.9 (2021)
e Chapter 32 — Secure Boot

Background reading

e Andrew S. Tanenbaum and Herbert Bos, “Modern Operating Systems” (2014)
e Chapter 1 — Introduction, 5 — Input/Output, 9 — Security

* Trusted Computing Group, “Using the TPM to Solve Today’s Most Urgent Cybersecurity
Problems” (2014)

e Slides 18 - 28

* Trusted Computing Group, “Trusted Platform Module 2.0 Library — Part 1: Architecture”

(2019)
e Chapter 11 — TPM Architecture

https://uefi.org/sites/default/files/resources/UEFI_Spec_2_9_2021_03_18.pdf
https://tue.on.worldcat.org/v2/search/detail/964528698?queryString=ti%3D%20Modern%20operating%20systems%20&clusterResults=true&groupVariantRecords=false
https://trustedcomputinggroup.org/wp-content/uploads/17.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf

* Next lecture
* Case study: Thunderspy

* Quiz
* Verify your understanding of material

 Questions?
e Live session on Dec 14
e Reach out via email

49

