
Microarchitectural Side Channels

BJÖRN RUYTENBERG
EINDHOVEN UNIVERSITY OF TECHNOLOGY

SPECIAL THANKS TO
YUVAL YAROM, THE UNIVERSITY OF ADELAIDE AND DATA61
FOR PROVIDING SUPPORT AND SELECTED CONTENT

2DMI20 – Software Security (2021)

Roadmap
Introduction to Side Channels
Microarchitectural Basics
What is Meltdown?
What is Spectre?
Exploitation Scenarios
Mitigations
Attack Variants

2

What is a Side Channel?

3

What is a Side Channel?

4

What is a Side Channel?

5

What is a Side Channel?

6

What is a Side Channel?

7

What is a Side Channel?

8

What is a Side Channel?

9

What is a Side Channel?

10

What is a Side Channel?

11

What is a Side Channel?

12

• Unintentional, usually covert communication channel leaking
potentially sensitive information

Various types
• Power analysis
• EM radiation
• Sound/light
• Timing

13

Microarchitectural Side Channels
Part 1: Meltdown

Meltdown – Basic Outline
• Design flaw that affects most modern Intel CPUs (and some ARMs)
• Uses out-of-order execution to leak data through cache timing attack

• From an unprivileged process, an attacker can:
• Bypass language-based security
• Bypass sandboxes, containers/paravirtualization hypervisors
• Read arbitrary memory, including kernel memory

14

Caches

• Fast processor but slower
memory
• Cache utilizes locality to bridge

the gap
• Divides memory into lines
• Stores recently used lines

Processor

Memory

Cache

15

mulq $m0
add %rax,$A[0]
mov
8*2($np),%rax
lea 32($tp),$tp
adc \$0,%rdx
mov %rdx,$A[1]
mulq $m1
add %rax,$N[0]
mov
8($a,$j),%rax
adc \$0,%rdx
add $A[0],$N[0]
adc \$0,%rdx
mov $N[0],-
24($tp)
mov %rdx,$N[1]
mulq $m0
add %rax,$A[1]
mov
8*1($np),%rax
adc \$0,%rdx
mov %rdx,$A[0]
mulq $m1
add %rax,$N[1]
mov ($a,$j),%rax
mov
8($a,$j),%rax
adc \$0,%rdx

Instruction Pipelining

• Nominally, the processor executes instructions one after
the other
• Instruction execution consists of multiple steps
• Each uses a different unit

Instruction
Fetch

Instruction
Decode Argument Fetch Execute Write BackInstruction

Fetch
Instruction

Decode Argument Fetch ExecuteInstruction
Fetch

Instruction
Decode Argument Fetch Execute Write Back

16

Instruction Pipelining

Instruction
Fetch

Instruction
Decode Argument Fetch Execute Write BackInstruction

Fetch
Instruction

Decode Argument Fetch ExecuteInstruction
Fetch

Instruction
Decode Argument Fetch Execute Write Back

Instruction
Fetch

Instruction
Decode Argument Fetch Execute Write Back

Instruction
Fetch

Instruction
Decode Argument Fetch Execute Write Back

Instruction
Fetch

Instruction
Decode Argument Fetch Execute Write Back

Instruction
Fetch

Instruction
Decode Argument Fetch Execute Write Back

Instruction
Fetch

Instruction
Decode Argument Fetch Execute

Instruction
Fetch

Instruction
Decode Argument Fetch Execute

Instruction
Fetch

Instruction
Decode Argument Fetch Execute

Instruction
Fetch

Instruction
Decode Argument Fetch

Instruction
Fetch

Instruction
Decode Argument Fetch Execute Write Back

Instruction
Fetch

Instruction
Decode Argument Fetch Execute Write Back

mulq $m0
add %rax,$A[0]
mov
8*2($np),%rax
lea 32($tp),$tp
adc \$0,%rdx
mov %rdx,$A[1]
mulq $m1add
%rax,$N[0]
mov
8($a,$j),%rax
adc \$0,%rdx
add $A[0],$N[0]
adc \$0,%rdx
mov $N[0],-
24($tp)
mov %rdx,$N[1]
mulq $m0
add %rax,$A[1]
mov
8*1($np),%rax
adc \$0,%rdx
mov %rdx,$A[0]
mulq $m1
add %rax,$N[1]
mov ($a,$j),%rax
mov
8($a,$j),%rax
adc \$0,%rdס

c = a / b;

d = c + 5;

• Nominally, the processor executes instructions one after the
other
• Instruction execution consists of multiple steps

• Each uses a different unit
• Pipelining increases utilization by executing steps of multiple

instructions

How to deal with
dependencies?

17

Out-of-Order Execution (1)

• Execute instructions when data is available rather than by
program order

• Completed instructions wait in the reorder buffer until all
previous instructions are retired
• Why not retire immediately?

IF ID AF EX WB

IF ID AF EX WB

IF ID AF EX WB

c = a / b;

d = c + 5;

e = f + g;IF ID AF EX WB

IF ID AF EX

IF ID AF EXIF ID AF EX WB

IF ID AF EX WB

IF ID AF EX WB

18

Out-of-Order Execution (2)

• Execute instructions when data is available
rather than by program order

• Completed instructions wait in the reorder buffer until all previous
instructions are retired
• Why not retire immediately?
• Out-of-order execution is speculative!
• Need to abandon instructions in the reorder buffer if never executed

IF ID AF EX WB

IF ID AF EX WB

c = a / b;

d = c + 5;

e = f + g;
IF ID

IF ID AF EX

IF ID AF EX WB

What if b=0?

19

i = *pointer;
y = array[i * 256];
i = *pointer;
y = array[i * 256];

CPU cache

array Secret dataptr

20

Kernel space (protected)User space

Program Flow – Legitimate Behavior

i = *pointer;
y = array[i * 256];

CPU cache

array Secret dataptr

21

Kernel space (protected)User space

Attack Flow (1)
Step 1:
Set pointer to kernel space
Step 2:
Due to out-of-order processing, CPU
fetches secret value from kernel space
Step 3:
Secret value is used to index
user space array
Exception triggered:
Results of out-of-order instructions
discarded (i takes previous value)

Attack Flow (2)

array Secret dataptr

i = *pointer;
y = array[i * 256];

CPU cache

22

Kernel space (protected)User space

Step 4:
Unprivileged process iterates through
array elements

Slow Slow
Fast (cache hit) Step 5:

Cached element will return much faster:
index indicates secret byte value

23

DEMO
Spying in Realtime on Password Input

[Source: Schwarz (2018)]

https://twitter.com/misc0110/status/948706387491786752

24

Meltdown – Mitigation
• Kernel Page Table Isolation (KPTI)

• Linux kernel memory no longer mapped into user space processes
• User space can no longer access kernel memory

• Approach seemingly solid, but…
• On-going discussion about soundness

• SMI handlers: parts of kernel memory must always be mapped into user space processes
• Protects kernel, but user space programs still vulnerable

• Introduces overhead when jumping from user mode to kernel mode
• New capability introduced (CAP_DISABLE_PTI), disables KPTI for “safe” processes 1

25

1 Re: [RFC PATCH v2 6/6] x86/entry/pti: don't switch PGD on when pti_disable is set [LWN.net]

https://lwn.net/Articles/744298/

Meltdown - Intel-only? (1)
• Meltdown initially thought to be linked with Transactional

Synchronization Extensions (TSX-NI)
• Intel-only hardware atomic memory operations on Haswell and later
• Enables Meltdown attack without triggering software exception handling

• TSX not a requirement for Meltdown
• Does make attack virtually impossible to detect2

26

2 Detecting Attacks that Exploit Meltdown and Spectre with Performance Counters – Trend Micro, 2018

https://blog.trendmicro.com/trendlabs-security-intelligence/detecting-attacks-that-exploit-meltdown-and-spectre-with-performance-counters/

Meltdown - Intel-only? (2)
• Meltdown initially thought not to affect AMD processors3

• Meltdown paper release: AMD is likely vulnerable
• PoC confirms OoO execution occurs across security domains, practical

exploitation therefore seems feasible

27

3 LKML: Tom Lendacky: [PATCH] x86/cpu, x86/pti: Do not enable PTI on AMD processors

https://lkml.org/lkml/2017/12/27/2

28

Microarchitectural Side Channels
Part 2: Spectre

Spectre – Basic Outline

• Design flaw that affects all modern CPUs: Intel, AMD, ARM, PowerPC
• Branch prediction and speculative execution leave traces in cache
• Cache timing attack reveals data from different security domains

• Two variants:
• Spectre-v1: Read from the current user space process
• Spectre-v2: Read from other processes

29

Speculative Execution and Branches (1)

• When execution reaches a branch
• The processor predicts the outcome of the

branch
• Execution proceeds (speculatively) along

predicted branch

• Correct prediction à all is well
• Misprediction à abandon and resume

30

Speculative Execution and Branches (2)

• Branch History Buffer (BHB)
Outcome of conditional branches
JGE 4006c9

• Branch Target Buffer (BTB)
Target of indirect branches
JMP eax

31

32

Spectre Variant 1 –
Bounds Check Bypass

Spectre-v1

if (x < array_len) {
i = array[x];
y = array2[i * 256];

}

arrayarray2 secret array_lenx

<

if (x < array_len) {
i = array[x];
y = array2[i * 256];

}Attacker

Victim

Branch
taken!

X is largeVictim

if (x < array_len) {
i = array[x];
y = array2[i * 256];

}

Spectre-v1

<

Cachex secret

arrayarray2 secret array_lenx

Attacker

Branch
taken!

VictimMispredict

arrayarray2 secret array_lenx

if (x < array_len) {
i = array[x];
y = array2[i * 256];

}

Spectre-v1

<

Cachex secret

Attacker

Branch
taken!

36

Spectre Variant 2 –
Branch Target Injection

Spectre-v2

Attacker

Victim

Victim's
Address
Space

Attacker's
Address
Space

jmpq %rax

movw (%rbx), %ax
movq (%rcx, %rax, 8), %rcx

lea gadget, %rax
jmpq %rax

ret

Gadget

Spectre – Mitigations
• Basic idea: prevent speculative execution across branches
• Three approaches:
• Spectre-v1: Explicitly prevent speculative execution across conditional

branches by inserting blocking operation
• Spectre-v2: Avoid training branch predictor by replacing branch instructions

with semantic equivalents
• Spectre-v2: Disable branch prediction across security domains

38

Spectre-v1 – Insert Blocking Operation

• Approach: Prevent speculative execution by inserting blocking operation
• LFENCE (serialize load operations), PAUSE (spin loop hint)

• Effective, but
• Need to recompile code or patch binary
• Significantly degrades performance – need static analysis to identify vulnerable code

39

scanf("%d", &untrusted);
if(untrusted < arrayLength)
{

value = array[untrusted];
asm("lfence");
value2 = array2[value * 64];

}

call 4004a0 <__isoc99_scanf@plt>
mov ecx,DWORD PTR [rbp-0xe4]
cmp ecx,DWORD PTR [rbp-0xe8]
mov DWORD PTR [rbp-0x114],eax
jge 4006c9 <main+0x109>
movsxd rax,DWORD PTR [rbp-0xe4]
movsx ecx,BYTE PTR [rbp+rax*1-0x70]
mov DWORD PTR [rbp-0xec],ecx
lfence
mov ecx,DWORD PTR [rbp-0xec]
shl ecx,0x6

Spectre-v2 – Retpoline (1)

• Approach: Avoid training branch predictor by replacing branch
instructions with semantic equivalents
• Return trampoline (retpoline)
• Indirect branch normally pulls return address off stack (“jump to this

address”)
• Replace with PUSH/RET

• Push target address onto stack
• Return to target address

• BTB does not learn about branch due to pattern mismatch

40

Spectre-v2 – Retpoline (2)

• Need to recompile code or patch binary
• Degrades performance
• Somewhat mitigated by Return Stack Buffer (RSB)

• Not a perfect solution: ineffective on Skylake and later
• RSB behavior different: when empty, falls back to BTB prediction
• Addressed with RSB stuffing 4; implemented by e.g. Linux kernel 5 and LLVM

compiler6

41

4 Retpoline: A Branch Target Injection Mitigation - Intel, 2018
5 x86/retpoline: Avoid return buffer underflows on context switch - Patchwork
6 [llvm-dev] LLVM Release Schedules: 5.0.2, 6.0.1

https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://patchwork.kernel.org/patch/10150615/
http://lists.llvm.org/pipermail/llvm-dev/2018-March/121757.html

Spectre-v2 – Disable BTB Prediction
• Approach: Disable BTB prediction across security domains
• Intel microcode update 7,8

• Introduces new Model Specific Registers (MSRs) to control BTB
• No learning across hyperthreads
• Higher security levels do not learn from lower level activity
• BTB clobbering, wiped on each context switch
• Major performance impact

42

7 Microcode Revision Guidance - Intel, 2018
8 Controlling the Performance Impact of Microcode and Security Patches - RedHat, 2018

https://newsroom.intel.com/wp-content/uploads/sites/11/2018/04/microcode-update-guidance.pdf
https://access.redhat.com/articles/3311301

Beyond Spectre and Meltdown
• Various follow-up publications on variants, other CPU vulnerabilities (non-

exhaustive):
• SGXpectre (2018)
• Foreshadow, Foreshadow-NG (2018)
• Microarchitectural Data Sampling: Rogue In-Flight Data Load, Fallout, ZombieLoad (2019)
• BlindSide (2020)
• Load Value Injection (2020)
• CacheOut, SGAxe (2020)
• CrossTalk (2021)
• Rage Against The Machine Clear (2021)

• Where available, mitigations usually comprise
• Compiler- and kernel-based protections
• Microcode updates for (then) in-market CPUs; partial silicon redesign for newer generations

43

https://arxiv.org/abs/1802.09085
https://foreshadowattack.eu/
https://mdsattacks.com/
https://mdsattacks.com/
https://zombieloadattack.com/
https://www.vusec.net/projects/blindside/
https://lviattack.eu/
https://cacheoutattack.com/
https://cacheoutattack.com/
https://www.vusec.net/projects/crosstalk/
https://www.vusec.net/projects/fpvi-scsb/

References

44

Background reading
• “Meltdown: Reading Kernel Memory from User Space” (2018)
• “Spectre Attacks: Exploiting Speculative Execution” (2018)

https://meltdownattack.com/meltdown.pdf
https://spectreattack.com/spectre.pdf

Admin

45

• Quiz
• Verify your understanding of material

• Questions?
• Reach out via email

