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What is a Side Channel?
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• Unintentional, usually covert communication channel leaking 
potentially sensitive information

Various types
• Power analysis
• EM radiation
• Sound/light
• Timing
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Microarchitectural Side Channels
Part 1: Meltdown



Meltdown – Basic Outline
• Design flaw that affects most modern Intel CPUs (and some ARMs)
• Uses out-of-order execution to leak data through cache timing attack

• From an unprivileged process, an attacker can:
• Bypass language-based security
• Bypass sandboxes, containers/paravirtualization hypervisors
• Read arbitrary memory, including kernel memory
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Caches

• Fast processor but slower 
memory
• Cache utilizes locality to bridge 

the gap
• Divides memory into lines
• Stores recently used lines

Processor

Memory

Cache
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mulq $m0
add  %rax,$A[0]
mov  
8*2($np),%rax
lea  32($tp),$tp
adc  \$0,%rdx
mov  %rdx,$A[1]
mulq $m1
add  %rax,$N[0]
mov  
8($a,$j),%rax
adc  \$0,%rdx
add  $A[0],$N[0]
adc  \$0,%rdx
mov  $N[0],-
24($tp)
mov  %rdx,$N[1]
mulq $m0
add  %rax,$A[1]
mov  
8*1($np),%rax
adc  \$0,%rdx
mov  %rdx,$A[0]
mulq $m1
add  %rax,$N[1]
mov  ($a,$j),%rax
mov  
8($a,$j),%rax
adc  \$0,%rdx

Instruction Pipelining

• Nominally, the processor executes instructions one after 
the other
• Instruction execution consists of multiple steps
• Each uses a different unit

Instruction 
Fetch

Instruction 
Decode Argument Fetch Execute Write BackInstruction 

Fetch
Instruction 

Decode Argument Fetch ExecuteInstruction 
Fetch

Instruction 
Decode Argument Fetch Execute Write Back
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Fetch
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mulq $m0
add  %rax,$A[0]
mov  
8*2($np),%rax
lea  32($tp),$tp
adc  \$0,%rdx
mov  %rdx,$A[1]
mulq $m1add
%rax,$N[0]
mov
8($a,$j),%rax
adc  \$0,%rdx
add  $A[0],$N[0]
adc  \$0,%rdx
mov  $N[0],-
24($tp)
mov  %rdx,$N[1]
mulq $m0
add  %rax,$A[1]
mov  
8*1($np),%rax
adc  \$0,%rdx
mov  %rdx,$A[0]
mulq $m1
add  %rax,$N[1]
mov  ($a,$j),%rax
mov  
8($a,$j),%rax
adc  \$0,%rdס

c = a / b;

d = c + 5;

• Nominally, the processor executes instructions one after the 
other
• Instruction execution consists of multiple steps

• Each uses a different unit
• Pipelining increases utilization by executing steps of multiple 

instructions

How to deal with 
dependencies?
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Out-of-Order Execution (1)

• Execute instructions when data is available rather than by 
program order

• Completed instructions wait in the reorder buffer until all 
previous instructions are retired
• Why not retire immediately?

IF ID AF EX WB

IF ID AF EX WB

IF ID AF EX WB

c = a / b;

d = c + 5;

e = f + g;IF ID AF EX WB

IF ID AF EX

IF ID AF EXIF ID AF EX WB

IF ID AF EX WB

IF ID AF EX WB
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Out-of-Order Execution (2)

• Execute instructions when data is available 
rather than by program order

• Completed instructions wait in the reorder buffer until all previous 
instructions are retired
• Why not retire immediately?
• Out-of-order execution is speculative!
• Need to abandon instructions in the reorder buffer if never executed

IF ID AF EX WB

IF ID AF EX WB

c = a / b;

d = c + 5;

e = f + g;
IF ID

IF ID AF EX

IF ID AF EX WB

What if b=0?
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i = *pointer;
y = array[i * 256];
i = *pointer;
y = array[i * 256];

CPU cache

array Secret dataptr
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Kernel space (protected)User space

Program Flow – Legitimate Behavior



i = *pointer;
y = array[i * 256];

CPU cache

array Secret dataptr
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Kernel space (protected)User space

Attack Flow (1)
Step 1:
Set pointer to kernel space
Step 2:
Due to out-of-order processing, CPU 
fetches secret value from kernel space
Step 3:
Secret value is used to index
user space array 
Exception triggered:
Results of out-of-order instructions 
discarded (i takes previous value)



Attack Flow (2)

array Secret dataptr

i = *pointer;
y = array[i * 256];

CPU cache
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Kernel space (protected)User space

Step 4:
Unprivileged process iterates through 
array elements

Slow Slow
Fast (cache hit) Step 5:

Cached element will return much faster: 
index indicates secret byte value
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DEMO
Spying in Realtime on Password Input

[Source: Schwarz (2018)]

https://twitter.com/misc0110/status/948706387491786752
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Meltdown – Mitigation
• Kernel Page Table Isolation (KPTI)

• Linux kernel memory no longer mapped into user space processes
• User space can no longer access kernel memory

• Approach seemingly solid, but…
• On-going discussion about soundness

• SMI handlers: parts of kernel memory must always be mapped into user space processes
• Protects kernel, but user space programs still vulnerable

• Introduces overhead when jumping from user mode to kernel mode
• New capability introduced (CAP_DISABLE_PTI), disables KPTI for “safe” processes 1

25

1 Re: [RFC PATCH v2 6/6] x86/entry/pti: don't switch PGD on when pti_disable is set  [LWN.net]

https://lwn.net/Articles/744298/


Meltdown - Intel-only? (1)
• Meltdown initially thought to be linked with Transactional 

Synchronization Extensions (TSX-NI)
• Intel-only hardware atomic memory operations on Haswell and later
• Enables Meltdown attack without triggering software exception handling

• TSX not a requirement for Meltdown
• Does make attack virtually impossible to detect2
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2 Detecting Attacks that Exploit Meltdown and Spectre with Performance Counters – Trend Micro, 2018

https://blog.trendmicro.com/trendlabs-security-intelligence/detecting-attacks-that-exploit-meltdown-and-spectre-with-performance-counters/


Meltdown - Intel-only? (2)
• Meltdown initially thought not to affect AMD processors3

• Meltdown paper release: AMD is likely vulnerable
• PoC confirms OoO execution occurs across security domains, practical 

exploitation therefore seems feasible 

27

3 LKML: Tom Lendacky: [PATCH] x86/cpu, x86/pti: Do not enable PTI on AMD processors

https://lkml.org/lkml/2017/12/27/2
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Microarchitectural Side Channels
Part 2: Spectre



Spectre – Basic Outline

• Design flaw that affects all modern CPUs: Intel, AMD, ARM, PowerPC
• Branch prediction and speculative execution leave traces in cache
• Cache timing attack reveals data from different security domains

• Two variants:
• Spectre-v1: Read from the current user space process
• Spectre-v2: Read from other processes
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Speculative Execution and Branches (1)

• When execution reaches a branch
• The processor predicts the outcome of the 

branch
• Execution proceeds (speculatively) along 

predicted branch

• Correct prediction à all is well
• Misprediction à abandon and resume
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Speculative Execution and Branches (2)

• Branch History Buffer (BHB)
Outcome of conditional branches
JGE 4006c9 

• Branch Target Buffer (BTB)
Target of indirect branches
JMP eax
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Spectre Variant 1 –
Bounds Check Bypass



Spectre-v1

if (x < array_len) {
i = array[x];
y = array2[i * 256];

}

arrayarray2 secret array_lenx

<

if (x < array_len) {
i = array[x];
y = array2[i * 256];

}Attacker

Victim

Branch
taken!



X is largeVictim

if (x < array_len) {
i = array[x];
y = array2[i * 256];

}

Spectre-v1

<

Cachex secret

arrayarray2 secret array_lenx

Attacker

Branch
taken!



VictimMispredict

arrayarray2 secret array_lenx

if (x < array_len) {
i = array[x];
y = array2[i * 256];

}

Spectre-v1

<

Cachex secret

Attacker

Branch
taken!
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Spectre Variant 2 –
Branch Target Injection



Spectre-v2

Attacker

Victim

Victim's
Address
Space

Attacker's
Address
Space

jmpq %rax

movw (%rbx), %ax
movq (%rcx, %rax, 8), %rcx

lea gadget, %rax
jmpq %rax

ret

Gadget



Spectre – Mitigations
• Basic idea: prevent speculative execution across branches
• Three approaches:
• Spectre-v1: Explicitly prevent speculative execution across conditional 

branches by inserting blocking operation
• Spectre-v2: Avoid training branch predictor by replacing branch instructions

with semantic equivalents
• Spectre-v2: Disable branch prediction across security domains
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Spectre-v1 – Insert Blocking Operation

• Approach: Prevent speculative execution by inserting blocking operation
• LFENCE (serialize load operations), PAUSE (spin loop hint)

• Effective, but
• Need to recompile code or patch binary
• Significantly degrades performance – need static analysis to identify vulnerable code
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scanf("%d", &untrusted);                                                                                                          
if(untrusted < arrayLength)                                                  
{                                                                            

value = array[untrusted];                                                
asm("lfence");                                                           
value2 = array2[value * 64];                                             

}

call   4004a0 <__isoc99_scanf@plt>
mov ecx,DWORD PTR [rbp-0xe4]
cmp ecx,DWORD PTR [rbp-0xe8]
mov DWORD PTR [rbp-0x114],eax
jge 4006c9 <main+0x109>
movsxd rax,DWORD PTR [rbp-0xe4]
movsx ecx,BYTE PTR [rbp+rax*1-0x70]
mov DWORD PTR [rbp-0xec],ecx
lfence
mov ecx,DWORD PTR [rbp-0xec]
shl ecx,0x6



Spectre-v2 – Retpoline (1)

• Approach: Avoid training branch predictor by replacing branch 
instructions with semantic equivalents
• Return trampoline (retpoline)
• Indirect branch normally pulls return address off stack (“jump to this 

address”)
• Replace with PUSH/RET

• Push target address onto stack
• Return to target address

• BTB does not learn about branch due to pattern mismatch

40



Spectre-v2 – Retpoline (2)

• Need to recompile code or patch binary
• Degrades performance
• Somewhat mitigated by Return Stack Buffer (RSB)

• Not a perfect solution: ineffective on Skylake and later
• RSB behavior different: when empty, falls back to BTB prediction
• Addressed with RSB stuffing 4; implemented by e.g. Linux kernel 5 and LLVM 

compiler6
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4 Retpoline: A Branch Target Injection Mitigation - Intel, 2018
5 x86/retpoline: Avoid return buffer underflows on context switch - Patchwork
6 [llvm-dev] LLVM Release Schedules: 5.0.2, 6.0.1

https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://patchwork.kernel.org/patch/10150615/
http://lists.llvm.org/pipermail/llvm-dev/2018-March/121757.html


Spectre-v2 – Disable BTB Prediction
• Approach: Disable BTB prediction across security domains
• Intel microcode update 7,8

• Introduces new Model Specific Registers (MSRs) to control BTB
• No learning across hyperthreads
• Higher security levels do not learn from lower level activity
• BTB clobbering, wiped on each context switch
• Major performance impact
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7 Microcode Revision Guidance - Intel, 2018
8 Controlling the Performance Impact of Microcode and Security Patches - RedHat, 2018

https://newsroom.intel.com/wp-content/uploads/sites/11/2018/04/microcode-update-guidance.pdf
https://access.redhat.com/articles/3311301


Beyond Spectre and Meltdown
• Various follow-up publications on variants, other CPU vulnerabilities (non-

exhaustive):
• SGXpectre (2018)
• Foreshadow, Foreshadow-NG (2018)
• Microarchitectural Data Sampling: Rogue In-Flight Data Load, Fallout, ZombieLoad (2019)
• BlindSide (2020)
• Load Value Injection (2020)
• CacheOut, SGAxe (2020)
• CrossTalk (2021)
• Rage Against The Machine Clear (2021)

• Where available, mitigations usually comprise
• Compiler- and kernel-based protections
• Microcode updates for (then) in-market CPUs; partial silicon redesign for newer generations
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https://arxiv.org/abs/1802.09085
https://foreshadowattack.eu/
https://mdsattacks.com/
https://mdsattacks.com/
https://zombieloadattack.com/
https://www.vusec.net/projects/blindside/
https://lviattack.eu/
https://cacheoutattack.com/
https://cacheoutattack.com/
https://www.vusec.net/projects/crosstalk/
https://www.vusec.net/projects/fpvi-scsb/
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Background reading
• “Meltdown: Reading Kernel Memory from User Space” (2018)
• “Spectre Attacks: Exploiting Speculative Execution” (2018)

https://meltdownattack.com/meltdown.pdf
https://spectreattack.com/spectre.pdf


Admin
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• Quiz
• Verify your understanding of material

• Questions?
• Reach out via email


